Abstract:
In this thesis the main motive is to characterize some of the algebraic and combinatorial
properties of spanning forest complexes Δs(G) of some simple finite disconnected
graphs G. Spanning forests complexes play a key role in algebraic, topological and
geometric combinatorics but, as compared to simplicial complexes, little is known
about their geometric and combinatorial structure. We characterize some algebraic
properties of forests complexes related to different book graphs on fixed ground set.
We provide the characterization of f-vector for the spanning forest complex of k
disjoint copies of a book graph.