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Abstract

On Group Distance Graph Evaluation

By

Attlah Abbas

Graph help us for building the interconnection network that are required by systems. The

unique graph labeling help us to ensure the functionality of these networks.In this research

we have discuss the labeling of certain graphs and how we develope the labeling pattern for

these graphs.We have used modulo group combinatorial techniques to find out the labeling

schemes.By using elements from modulo group we have define group distance and distance

magic labeling.

We have calculate the weight of vertices and magic constant of graphs by finding the

labeling of direct product of prism graph and cycle graph Pn ×C4 under modulo group Z8n

and Pn × Cm under modulo group Zm × Z2n ∀ n = 3 and m =≥ 4
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Chapter 1
Introduction

Graph Theory is the study of connections that provide a helpful tool to calculate and sim-

plify the moving parts of a dynamic system. Using networks of nodes and links that might

extract every detail from computer data to city plans. It aids academics in analysing the op-

timal paths.It is used in social network connections,search engine ranking of hyperlinks,gps

maps to determine the fastest route and other applications.

The father of graph theory, famous Swiss mathematician Leonhard Euler has been

linked with developing the field with his work on “Königsberg bridge” problem in 18th

century.

Konigsberg which was a city of Germany now a part of Russia and it is on the Pregel

river. In this city there are seven bridges and the two islands are connected with these seven

bridges. So the people of that city thought that how could one walk through konigsberg

without crossing the every bridge more than once. So the mayor of the city wrote this

problem to famous mathematician Leonhard Euler that is it possible to cross the konigsberg

all bridges without crossing anyone of its bridges twice? At first he thought this problem

is minor but it was not and this problem helped paved the way towards new mathematical

branch which is Graph Theory.

He proved that its impossible to cross the bridges without repeating it. He used dots and

lines which we called vertices and edges to solve this problem.He explained the vertices

and edges and this thing leads towards a new graph which he called Eulerian Grap.A little

over two centuries had passed since Euler’s lecture on the Königsberg bridges, and Cayley

was moved by an interest in particular analytical forms derived to investigate a certain class

of graphs using differential calculus, the trees, during the time that listing was developing

the idea of topology. A particular discipline of chemistry is theoretical chemistry. The

consequences of this study has had on me is substantial. His main methods were methods

for counting graphs with specific properties. The foundational resulting results made by

P¨olya in 1935–1937 led to the further advancement of the theory of enumerative graphs.
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De Bruijn generalised them in 1959. Cayley juxtapose his findings from the tree with a re-

cent chemical composition scrutiny. The initial development of what is currently regarded

as standard nomenclature in the discipline involved the fusion of mathematical and chem-

ical principles. Specifically, Sylvester first used the term ”graph” in an article of research

that was published in Nature in 1878. In that paper, he compares ”quantic invariants” and

”Co-variants,” two concepts in algebra. Molecular diagrams are a kind of imagery aid that

represents a Denes Knig penned the first graph theory textbook,which was initially pub-

lished in 1936. Frank Harary’s second book, which was published in and is regarded by

many people as the ”classic textbook on the topic,” allowed professionals in chemistry,

electrical engineering, and mathematics to work on it.It’s imperative that engineers and so-

cial scientists communicate with one another. Among those that are most well-known and

captivating problems in graph theory is the four-color problem: Is it accurate to say that

there are exactly the same amount of colours on every map created using the colours red,

green, and blue? The regions of an airplanes can be painted in four different ways, so that

any two portions that share a boundary can have distinct colours.The issue in this was first

raised by Francis Guthrie in 1852 and was the first to be overcome. De Morgan’s letter to

Hamilton from the same year contains a recorded account and a documented record. A se-

lection of the numerous erroneous proofs that have been put out is provided below. Authors

Cayley and Kempe are among the others.

After uncovering and generalising this problem some of the researchers examined the

colours of graphs implanted on multiple surfaces. Issues with factorization are a new class

of problems that Tait’s improved version gave rise to, and Petersen and Knig have studied

them extensively. Turan’s 1941 findings, which drew from Ramsey’s Colorations work,

led to the development of extremal graph theory, a novel subfield of graph theory. The

four-color dilemma hasn’t been solved in more than a century.

Heinrich Heesch proposed a computer-aided approach to the problem in 1969. 1 Heesch’s

proposal of ”discharging” is an essential factor of the electronic evidence that Kenneth Ap-

pel and Wolfgang Haken developed in 1976. The manifestation, which included using a

computer to evaluate the characteristics of 1, 936 couples, was not widely acknowledged

at the time because to its complexity. The self-governing expansion of topology between
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1860 and 1930 nourished the theory of graphs, leading to the innovations of Kuratowski,

Whitney, and Jordan. Collaboration is a key component in the growth of graph theory

overall.

On the other side, topology was the use of novel algebraic techniques. Voltage and

current in electric circuits is the earliest example of such an application, as determined by

physicist Gustav Kirchhoff in his 1845 publication of Kirchhoff’s Circuit Rules. Asymp-

totic probability estimation of graph theory, which has yielded a multitude of graph-theoretic

discoveries, gave rise to the second branch of graph theory, the random graph, and the use

of probabilistic techniques in it, notably in the work of Erdos and Renyi.

1.0.1 Applications

Graph theory is a subject which is being applied now a days in many fields.Realtionships

and processes in range of domains, such as physics, bio,social and informational systems

can be appropriately displayed using graphs. Graphs are particularly advantageous in com-

puter science to depict the communication networks, data structures, computing equipment

and computational activites. Mostly ther are reffered to as networks when nodes or edges

incorporate properties.Directed graphs, for instance, can depict a website’s hierarchy, with

edges standing in for connections between web pages and vertices that represent individual

web pages. Challenges in computer chip design, biology, booking a getaway, and social

networking are all approached similarly. Computer science has made managing graphs

a prominent topic, leading to the development of graph databases to store and retrieve

long-lasting graph-structured data, as well as graph rewriting systems to define and vi-

sualise graph modifications.Linguistics also makes extensive utilisation of graph-theoretic

methods. While directed acyclic graphs are used in contemporary syntactic theories like

head-driven phrase structure grammar, tree-based graphs are still commonly used in the

hierarchical framework of syntax and compositional semantics. Strategies like WordNet

and VerbNet also show how crucial semantic networks are for modelling word meanings

in context in machine linguistics. Graph theory has been applied in chemistry and physics

for learning about condensed matter and molecular structures. In chemistry, atoms are de-

lineated by vertices, while bonds that lies within molecules are visualized by edges. This
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helps to make it possible to process molecular structures with computers and do database

searches. Graphs are used in computational neuroscience to explain functional intercon-

nections between brain areas, which aid in the understanding of cognitive function, while

they are utilised in statistical physics to analyse system components and physical process

dynamics. Graphs can also depict the channels found in porous materials, which link the

pores with smaller channels.In sociology, graph theory is becomes especially helpful for

social network analysis tasks like determining actor status or monitoring the spread of ru-

mours. Social network graphs include collaboration graphs that show teamwork in tasks

like filmmaking, impact graphs that show individual influence, and friendship graphs that

show personal contacts. Researchers can might investigate breeding habits, disease trans-

mission, and the consequences of movement changes on species by using graph theory,

which is frequently utilised in biological and environmental conservation. In graph theory,

vertices represent habitats and edges show migration patterns.

1.0.2 Graph Labeling

A successful approach to giving numbers to the components of graphs so that particular

values equals one another is achieved through graph labeling.Around the second half of

1960 graph labeling concept was first intoduced.Vertex,edge,distance and group distance

magic are the few examples of various labelings which are inspired from A.Rosa’s β valu-

ation.Distance magic labeling leads to the exploration of group distance magic which was

first presented as Σ labeling. Later on with the passage of time its name changes into one-

vertex magic labeling and then in 2009 it named as distance magic labeling. In this method

vertices of graph are labeled depending on their distances from one another.

1.0.3 Research Objective

Group distance magic labeling helps to seek out the structural and mathematical aspects of

direct product of unlabeled regular graphs and uncover the characteristics they possess.The

implementation of GDML attempts to create the framework for analysing regular graph

products and highlighting their essential features. The ultimated objective of this research

is to find the particular groups in which direct product of regular graphs reveals the features

4



of group distance magic labeling.This research work helps us to have a good understanding

between group theory,graph theory and the graph labeling.
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Chapter 2
Basics of Graph Theory

2.1 Graph

A figurative representation of data is called graph which is made up of using lines, arrows

and some different shapes to describe the connection across the variables.In other words

graph is a mathematical structure used in mathematics and computer science to represent

a collection of items (referred to as vertices or nodes) and the connections (referred to

as edges or arcs) between them.Graphs have been utilised in enormous number of fields

to solve several problems like finding the quikest pathways between two cities,improving

traffic flow,assigning multiple channels to tv stations,maximizing useful resources in con-

struction projects etc.We have discussed many types of graphs in this chapter and each

graph have different properties upon which they are different from each other.

In mathematics graph is usually defined as ordered pair G = (V,E) where V is the set

of vertices and E is the set of edges. A graph is a system made up of two basic parts.

Vertices

Another term used of vertices is Nodes and they are the discrete components or entities

that are shown in the graph. For convenience, a unique identifier or label is typically given

to each vertex.

Edges

The links or connections between vertices are known as edges(arcs). The relationship,

interdependence, or association between two vertices is represented by an edge. Both di-

rected and undirected edges exsit.The directed graph is also named as digraphs. The edges

of a directed graph have a distinct direction, signifying a one-way relationship.The direc-

tion is may b in or out. If the direction is towards the vertex it is counted as in degree and

if the the direction of arrow is opposite to the vertex than it is counted as out degree.The
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degree indicates the quantity of edges attached to the vertices.The edges of an undirected

graph, which shows a symmetric connection or a two-way relationship, have no direction

Figure 2.1: Undirected and Directed Graph

Hand Shaking Lemma

In a graph theory we have a lemma through which we can find the number of edges just by

knowing the sum of the degree of the vertices. According to that lemma sum of degree of

vertices is equal to two times of edges.

n

∑
i=1

d(vi) = 2|E(G)|

Figure 2.2: Hand Shaking Lemma

From the above example we have:

Σ3+2+4+3 = 2(6)
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12 = 12

Hand Shaking Di Lemma

We also have a lemma for directed graphs to find the edges of a graph.The lemma states

that the sum of the degress coming towards the vertices is equal to the sum of degress going

away from the vertices.

Indeg
n

∑
i=1

d(vi) = outdeg
n

∑
i=1

d(vi)

Figure 2.3: Hand Shaking Di-Lemma

From this example we have:

IndegΣ2+2+1+1+1 = outdegΣ1+1+1+2+2

7 = 7

One example of graph is Online gaming network. The players or the gaming accounts

could represent the vertices. Each vertex is the players account and its connection with its

friends or other team members could be the edges. In an undirected graph, the relationship

between players are balanced. If we have three players A,B,C and player A is connected to

player B and C it means player B and C are also connected to player A. In directed graph

the relation between players are not balanced. If Player A is connected to Player B and C

it dosen’t mean that player B and C are also connected to player A.

Graphs are widely used in modelling and analysis of many real world scenarios cov-
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ering social networks, transportation networks,gaming network and others. They served

as a groundwork for a number of graph algorithms,analysis methods and offer an effective

structure for figuring out the connections and relationships between entities

Graph are visually represented using diagrams, where vertices are represented with

points/circles and the edges are represented with lines/arrows which are connected with

vertices. Mathematically graphs are usually represented by adjacency matrices or adja-

cency lists which offers the compact way of storing the connections between vertices.

2.2 Different terminologies in graph

A graph without any multiple edges (if two vertices are connected there is only edge that

indicates the connection between them) or loops (that there are no any edges that connect

a vertex to itself) is known as Simple Graph.

Figure 2.4: Simple Graph

A graph having multiple edges or loops is the multigraph.In multiples edges each edge

is treated as unique edge despite they are connected to same pair of vertices.Multi graphs

help us in transportation network like the multiple edges represent the different routes/mode

of transportaion between same location.
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Figure 2.5: Multi Graph

The graph in which each edge is allocated a numerical value is called weighted graphs.In

real world scenairo like in transportaion network they help us to modelling travel time, dis-

tance and the costs between locations.

Figure 2.6: Weighted Graph

If a graph is part of another graph it is known as subgraph. For example a graph

representing a transportation network having locations as vertices and roads as edges. A

subgraph is formed by selecting a specific area between the location(vertices). In the ex-

ample given below the first one is the graph and the second is the subgraph of first graph.
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Figure 2.7: Subgraph

A kind of graph within which the edges connect each vertex is called path graph. The

degree of path graphs are 1 or 2 with the exception of end points whose degree is 1. Pn is

used to represent the path graph. In path graph if we have n vertices then we have n− 1

edges

Figure 2.8: Path Graph

A vertex in graph that has no edges incident to it are known as isolated vertex. These

vertices are disconnected from the rest of graph.

Figure 2.9: Isolated Vertex

Everytime when we are having a path between any pair of vertices in a graph is known

as connected graphs. There is no isolated vertex in this graph.
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Figure 2.10: Connected Graph

Two vertices are said to be adjacent if they share one edge.Consider a graph.Two ver-

tices a and c adjacent to each other in the example given below as there is an edge between

them but the vertices b and c are not adjacent to each other.

Figure 2.11: Adjacent Vertices

Complete graph Kn in which every 2 distinct vertices are connected by an edge. Given

below K2 and K3 are the examples of complete graph.

Figure 2.12: Complete Graph

Two or more edges incident with same vertices are termed as parallel edges.In example

given below x3 and x4 are parallel to each other and x5 and x6 are parallel to each other.
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Figure 2.13: Parallel Edges

If we are having a graph and we will draw it in plane and it will not overlap/cross the

edge then that graph is a planner graph. Like in the example given below graph K4 is

embedded in plane.

Figure 2.14: Planner Graph

The graphs that cannot be embedded in plane means the graph cannot be drawn in plane

without edge crossing is known as non-planner graph. For example K5 graph.
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Figure 2.15: Non-Planner Graph

A graph in which every nodes have the same degree meaning each node has the same

number of edges incident to it is known as regular graphs. The following graph is 2-

regular.

Figure 2.16: Regular Graph

The graph in which degree of every vertex is not same, the edges attach to each vertex

are different in number is called irregular graphs. In example given below degree of inner

vertex is 3 but the degree of other vertices are not 3.

Figure 2.17: Irregular Graph

A graph having zero size but n order is known as null graph.To put it anotherway, a

graph only having vertices with no connection between them.
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Figure 2.18: Null Graph

If we start from any vertex that we want and then we travel across an edge to get another

vertex is called walk. We can repeat the edges and vertices in walk.The length of walk is

equal to its number of edges.

A walk in which there is no repetition of edges is termed as trail.

In graph path is also a walk but it does not visit any vertex more than once.

Circuit when we have closed trail having length 3 or more.

A walk is if we move from d towards b then e,b,d and then a.

In the example given below trail is moving around c,d,b,e,d,a ,

c,d,b,e is a path and

e,b,d,e is a circuit in the graph given below.

Figure 2.19: Walk,Trail, Path and Circuit in Graph

A path is called eulerian path in a graph if it traverse each edge in a graph once and

only once.

ue1ve2we3xe4ye5w is eulerian path in given graph
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Figure 2.20: Eulerian Path

An euler circuit is like euler path but it starts and end at same vertex. If the vertex in a

graph having odd degree then no euler circuit is possible.

y,x,w,v,u,w,y is the euler circuit in given graph.

Figure 2.21: Euler Circuit

A graph that satisfy both the properties of euler path and euler circuit is known as

eulerian graph.
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Figure 2.22: Eulerian Graph u,v,w,x,y,u

A simple path that goes through all vertices of graph but the ending point distinct, is

known as hamiltonian path

Figure 2.23: Hamiltonian Path u1,u2,u3,u4

Except the repition of starting and ending vertex, if a circuit in graph passes through

each vertex only once is known as hamiltonian circuit.
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Figure 2.24: Hamiltonian Circuit u1,u2,u3,u4,u5

A graph possessing hamiltonian circuit is named as hamiltonian graph.

Figure 2.25: Hamiltonian Graph u1,u2,u3,u4,u5,u1

If the begining and the ending vertex in graph are same then it is known as cycle graph

in graph theory.It is denoted as Cn A simple cycle in a graph pasess through distinct vertices

and edges in a graph.
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Figure 2.26: Cycle Graph

A graph having atleast one cycle which is path and that starts and end at a same point

and doesn’t go through any other point twice is known as Cyclic Graph

Figure 2.27: Cyclic Graph

A special sort of graph known as wheel graph is graph which is develops by joining

one vertex to each vertex in cycle graph.Wn is a representation of wheel graph.
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Figure 2.28: Wheel Graph W4

If we are having two graphs and each and every vertex from both graphs are connected

with each other then we can say that this is as complete bipartite graph.It is denoted as

Km,n

Figure 2.29: Complete Bipartite Graph K2,3

When we have the cartesian product of a path graph P2 with cycle Cn then we have a

new graph which we named prism graph.The notation we used for prism is Pn.
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Figure 2.30: Prism Graph P3

A type of graph that is undirected and acyclic meaning there are no cycles init is known

as tree graph. A tree with n vertices has exactly n−1 edges.

Figure 2.31: Tree Graph

If we want the union of two graphs then we will merge the vertex and edge set of

both graphs.Mathematically we can write as X = (vx,ex) Y = (vy,ey) then the union is

represented as G = X ∪Y , where vertex and edge set are V = vx ∪ vy , E = ex ∪ ey. G =
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Figure 2.32: Union of Graph

Consider graphs G1=(V 1,E1) and G2=(V 2,E2). The intersection of graphs G1,G2

is shown as G = G1∩G2 where vertex set V =V 1∩V 2 and edge set E = E1∩E2.

Figure 2.33: Intersection of Graph

A complement of graph G is a graph G′ having all the vertices of graph G and there

will be edge between vertices v′ and e′ of graph G′ if and only if there is no edge between

vertices v and e of graph G.
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Figure 2.34: Complement of Graph

If the intersection of vertices of graphs are empty then the sum of two graphs G+H is

defined as the graph whose edge set is comprised of edges that are in both G and H along

with the edges which are formed through the connection of each vertex in G to each vertex

in H. The graph’s vertex set is V (G)+V (H).

Figure 2.35: Sum of Two Graphs P3 and P4

Consider we have graph X having three vertices and two edges and graph Y with two

vertices and one edge. Now if we take three copies of graph Y and then connect all vertices

of each copies to corresponding vertex in X is known as corona of two graphs.
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Figure 2.36: Corona of Graphs

If the edge sets of graphs G1 and G2 have a 1 : 1 correspondence, meaning that if edge

e1 in G1 has end vertices u1 and v1, followed by the end point vertices u2 and v2 in G2

on the matching edge e2 in G2 that corelate with u1 and v1, then G1 and G2 are said to be

isomorphic. The two graphs, G1 and G2, in the example below are isomorphic.

Figure 2.37: Isomorphism of Graphs

Line graph is represented by L(G) and is defined as:

L(G) = E(G)

E(L(G)) = {uv : u,v ∈ L(G) and u,v are next to eachother in G.
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Figure 2.38: Line Graph

2.1.4 Graph Products

The process of combining two graphs G and H into a new graph is known as Cartesian

product and we used to represent cartesian product of two graphs by G□H.This product

exists if and only if an edge exists between g and g′ in G and h = h′ in H or an edge exists

between h and h′ in H and g = g′ in G. [4]

Figure 2.39: Cartesian Product of Graphs

Two graphs P and Q are said to be having Direct Product if and only if there is an edge

between p and p′ in P and q and q′ in Q. Its is denoted by P×Q. [4]
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Figure 2.40: Direct Product of Graphs

Let an arbitrary regular graph X . Then the direct product of X with cycle graph of order

4 is a distance magic graph.

Composition of graph also known as Lexicographic product of graph G and H exists

if in graph we have an edge between g and g′ in G or g = g′ and an edge between h and h′

in H. Mathematical notation for this product is G◦H or G[H]. [4]

Figure 2.41: Lexicographic product of Graphs

Here we have some results of lexicographoc product which are:

Consider an r-regular graph and a cycle graph where r ranges greater than or equal to

1 and the range of n is greater or equal to 3.Then lexicographic product of graph admits a

distance magic labeling.

Suppose we have intgers i, j,k and i,k are greater than equal to 1,3 and j is greater than

1. Then iCk ◦K j has DML iff j is even or i, j,k is odd and p is congurent to mod4.

G⊠H is basically representaion of strong product.A graph having vertex set V (G)×

V (H) in strong product has adjacent vertices (g,h) and (g′,h′) in G⊠H iff g = g′ and h is
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next to h′ in H h = h′ and g is adjacent to g′ in G,or g is adjacent to g′ in G and h is adjacent

to h′ in H. [13]

Figure 2.42: Strong Product of Graphs

If n is not congurent to 0 mod4 and is greater than 1 then the strong product of Cn and

C4 is not a DM graph.

In this chapter we discuss the main components of graphs that are vertices and edges.We

aslo discuss the different types of graphs and how these different types of graphs help

us in modelling and understanding different relationship and structures in real world sce-

nario.Furthermore we discuss the the different type of graph products which are cartesian

product, direct product, strong product and lexicographic product.
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Chapter 3
Introduction of Graph Labelling

3.1 Overview of Graph Labeling

An important part of graph theory which includes a broad range of methods and tech-

niques for providing labels to the elements of graph which are vertices and edges is known

as Graph Labelling.To find a label that meets the appropriate requirement for the task at

hand was the primary objective.Labeled graphs are useful models in the fields of database

management, circuit design, coding theory, communication network addressing, and se-

cret sharing schemes.The Conception of graph labeling was first put forward in mid-1960

and most techniques were inspired by Rosa’s (1967) beta-valuation graphs [1].An injective

map f from a graph G′s vertices to the set {0,1, ,q} is the beta-valuation of a graph. This

means that induced map g on graph’s edges given as g(xy) = | f (x) − f (y)| is aswell injec-

tive.For an enormous number of applications in coding theory,programme design,database

administration,communicating entangalment adressing and private sharing schemes, la-

belled graphs are helpful. [1]

Definition 3.1.1. Graph Labeling is simply the act of giving labels (usually non-negative

integers) to the graph’s elements which can be vertices, edges or any combination of

these.Formally we can say a labeling of graph G(V,E) is a realtion that, given particular

conditions maps graph components to a set of labels.

Tournament sheduling is one specific application of graph labelling. Like Round Robin

Tournament, which is good for less number of teams.Each team palys aganist everyother

team exactly once.In this we have equalized incomplete tournament and fair incomplete

tuornament.

There are n teams and r rounds in an equalised incomplete tournament EIT(n,r). Each

team in this matches up with particularly r opponents, while the overall number of op-

ponents for every team remains fixed.A novel kind of labelling known as distance magic

labelling of r-regular networks with n vertices has been generated by solving EIT(n,r).

28



A fair incomplete competition containing p rounds and n teams. In this each team plays

every other team precisely so that the combined strength of the opponents that each team

fails to score is equal..By finding solution of FIT we get a distance d-antimagic labelling

in which by assigning labels to vertices,such that the sum of their labels is distinct for any

pair of vertices at distance d.

3.2 Types of Graph Labeling

There are some important types of graph labelling depends on some properties of labels.

• Graceful Labelings

• Harmonious Labelings

• Magic Type Labeling

3.2.1 Graceful Labeling

The approach of labeling edges involves computing the absolute difference between the

labels of its end vertices where m is the number of edges and vertices are labelled with

different numbers which are selected from 0 to m. At first it was known as β -labeling but

later on S.W.Golomb named it Graceful Labeling.[17]

• The path graph Pn is graceful for all n ≥ 1

• Kn graphs are graceful if and only if n is less than equal to 4.

Figure 3.1: Graceful Labeling of P3
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Figure 3.2: Graceful Labeling of K3

3.2.2 Harmonious Labeling

A function f which is injective from V (G)→ Zq and f (xy) = ( f (x)+ f (y))(modq) ∀x,y ∈

E, is an induced function which is bijection, then the injective function f is said to have a

harmonious labeling of a graph G. [10] Given below is the example of harmonious labeling

of two graphs

Figure 3.3: Harmonious Labeling of Graphs

3.2.3 Magic Labeling

Extension of magic squares and magic rectangles are magic squares.Extending this idea

to graphs we get a sum of labels related to the vertices or edges taht are constant over

the graph.in 1963 the first magic labeling was introduced by Sedlack. The graph’s edges

are labelled with real values, and each edge’s total label sum is incident to a vertex has to

remain constant.

Following are the different types of magic labeling.
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Edge Magic Total Labeling:

A graph H (V, E) having a bijection from the union vertex and edge sets to {1,2,..., V ∪

E } such that for any edges xy,φ(x) + φ(y) + φ(xy) is constant, such as that constant is

named as magic constant and this type of labeling is called magic labeling.This labeling

was defined back in 1970 by Kotzig and Rosa. After years, Ringel and Llad rediscovered

this idea in 1996, referring to it as EML. In 2001 Wallis named this valuation of the graph

as edge magic total labeling just to differentiate it from other kinds of labelings.

Definition 3.2.1. Edge Magic Total Labeling is a mapping µ :V ∪ E → {1,2,..., v+e } ,there

exist a positive number k for every edge xy ∈ E(G) , such that

µ(x)+µ(xy)+µ(y) = K

where,

Wµ(xy) = µ(x)+µ(xy)+µ(y)

is called weight of edge xy.

Figure 3.4: EMTL of C3 with K = 10

Where K is magic constant.

• Path graph and cycle graph holds edge magic total labeling for n less than equal to 3

whereas n is odd and having magic constant k = 3n+1.
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•

Super Edge Magic Total Labeling :

To put it simplyv SEMTL is an EMTL if the vertices are labelled with samllest numbers.

Figure 3.5: SEMTL of P3 with K = 9

Vertex Magic Total Labeling:

Years back in 1999 the proposal of vertex magic total labeling was given by MacDougall,

Miller, Slamin, and Wallis [3]. A mapping which is one to one from the vertices and

edges onto the integers {1,2,3, ...,v+ e} so that the labels of incident edge and the total

of the labels on the vertex are always be equal.Formally,if there is constant k.An injective

mapping µ on a graph G (V, E),from V ∪ E to the set {1,2, ..., |V |+ |E|} is a V MT L such

that ,

Wµ(v) = µ(v)+∑µ(vu),∀v ∈V.

where the sum is overall vertices u adjacent to v.[9]

Figure 3.6: VMTL of Graph with k = 10
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Where k is a magic constant.

Super Vertex Magic Total Labeling

VMTLµ is called super vertex magic total labeling if

µ(V (G)) = {1,2, ..., |V |+ |E|}

Figure 3.7: SVMTL of Graph with k = 19

3.2.4 Antimagic-type Labelings

Anti-magic graphs were initially suggested by Hatfield and Rigel in 1990.If the labels of

the graph’s q edges can be written as {1,2, ...,q} without doubling and the total labels of

edges that are incident to each vertex differ that graph is termed as anti-magic.

Definition 3.2.2. A mapping φ : V ∪E → {1,2,..., v+e } to form arithmetic sequence exist

for a > 0 with common difference d ≥ 0 is termed as edge antimagic total labeling . [9]
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(a,d)-Edge Antimagic Total Labeling

For all graphs with G= (V,E) a one to one mapping µ : V (G)∪E(G)→{1,2, ...., |V (G)|+

|E(G)|} is described as (a,d)-edge antimagic total labeling.Thus for two numbers a > 0

and d ≥ 0 the set of edge weight corresponds to {a,a+d,a+2d, ...a+(|E(G)|−1)d.

In edge antimagic total labeling

Min. possible edge weight = a ≥ 6

Max. possible edge weight = (v+ e)+(v+ e−1)+(v+ e−2).

Formula of d for edge anti magic total labeling.

If we have a bijection σ : V ∪E = {1,2, .......|V |+ |E|} admits EAMTL then:

The weight of any edge ≤ maximum weight

a+(e−1)d ≤ (v+ e)+(v+ e−1)+(v+ e−2)

d ≤ 3v+3e−9
e−1

Figure 3.8: (6,4) EAMTL of a Graph S5
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Super (a,d)-Edge Antimagic Total Labeling

An (a,d)-edge antimagic labeling (EAT) µ of a graph G is called super (a,d)-edge an-

timagic total labeling if µ(V ) = {1,2, .....|V |}.

In super edge antimagic total labeling

Min. possible edge weight = a ≥ 1+2+ v+1

Max. possible edge weight = 3v+ e−1.

Formula of d for SEAMTL

The weight of any edge ≤ maximum weight

a+(e−1)d ≤ 3v+ e−1

d ≤ 2v+e−5
e−1

Figure 3.9: Super (a,d)-EAT Labeling of a Graph

(a,d)-Vertex-Antimagic Total Labelings

Definition 3.2.3. A linked graph G(V,E) is said to have (a,d)-vertex-antimagic total label-

ing if it contains non-negative integers (a,d) and one-one and onto mapping.The mapping

g f : V → N, which is induced is such that g f : E → {1,2, ..., |E|} defined as g f (V ) =

{a,a+d, ...,a+(|V |−1)d|} ;g f (v) = ∑{ f (uv)|uv∃E(G)} is injective.

In vertex antimagic total labeling

Min. possible vertex weight = a ≥ 6

Max. possible vertex weight = (v+ e)+(v+ e−1)+(v+ e−2).

Formula of d for vertex anti magic total labeling.

The weight of any vertex ≤ maximum vertex weight

a+(v−1)d ≤ (v+ e)+(v+ e−1)+(v+ e−2)

d ≤ 3v+3e−9
v−1
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Figure 3.10: VAMTL of a Graph

Super (a,d)-Vertex-Antimagic Total Labelings

(a,d)-vertex anti magic labeling g f is reffered as super (a,d)-vertex antimagic labeling if

g f (V ) = {1,2, ...,v} and g f (E) = {v+1,v+2, .....v+ e}.

Figure 3.11: Super (a,d)-VATL of A graph

This chapter comprises many types of labeling, i.e.Vertex and edge magic total labeling,super-

edge and vertex magic total labeling, edge and vertex antimagic total labeling,super edge

and vertex antimagic total labeling and their correspondance graphs.We will discuss the

group based magic and antimagic labelings and their outcomes in the upcoming chapter.

36



Chapter 4
Group Based Labelling

Assigning labels to vertices and edges of the graph based on properties/characteristics of

group is known as group based labelling. Group based labelling provide a structured

approach to represent and analyse different element of graph structure. In this, we select

labels from group and apply them on vertices or edges which are the elements of graph in

accordance with specific criteria. In group-based labelling we categorized them as follow-

ing

• colour:It is used in graph colouring problems in which elements of graph are given

colours in such a pattern that neighbouring elements have opposite colours.

• weight: In this edges are labelled with weight which represent different numerical

values.

• direction: Edges are labelled for directions.

4.0.1 Distance Magic Labelling

A one-one and onto mapping from vertex set to {1,2,....,n} such that for each vertex x

∑
y∈NG(x)

l(y) = k

,where NG(x) is the set of vertices of G adjacent to x, is DML of a graph G with magic

constant k. A graph is referred as distance magic graph if it has a DML.[14]

It is technique in which vertices/edges are labelled in such a way that they have specific

properties at a certain distances between labelled elements.The sum of labells whith in the

graph has a uniform value known as magic constant. Magic constant is specific value

associated with labelling of a graph. If we have a achieved a magic constant in graph it

means that labelling of graph is satisfied and it will help in different application domains

like network optimization, coding theory and cryptography. The notion of distance magic
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labeling emerged through the building of magic squares. A distance magic labelling of

a graph G = (V,E) is a bijection σ : V → {1,2, ..., |V |} such that the total of labels in

neighborhood N(x) is not dependent on x is distance magic labeling of graph G = (v,E).

This total is known as magic constant.

Few results of group distance magic labeling are listed below.

• A necessary requirment for a graph G of order n to have magic labeling is

kn = ΣxεV deg(x)l(x)

where k is magic constant. [12]

• A path graph Pn of n vertices holds distance magic labeling only for n equals 1 or 3.

[12]

• Cycle graph Cn having length n is said to be DM graph if n is equal to 4 [12]

• If n = 1 then the complete graph having n vertices holds DML. [12]

• Tree graph T is distance magic if it is equal to path graph of length 1 or 3. [12]

• A graph will not be considered as distance magic graph if it has order n and two

vertices has degree n−1.[11]

• Assuming x,y,z are all from V and if the graph G is distance magic with y lying

next to x and z and degree of x and y equalling two and that graph G either has a

component that is isomorphic to C4 or is itself is isomorphic to C4. [3]

Balanced Distance Magic Labelling

A subclass of DML has been found which is called balanced distance labelling and it be-

haves well among products. A DM graph G with even number of vertices is said to be

balanced if there exist a one-one and on-to mapping l : V (G)→ {1, ...., |V (G)|} such that

for every p ∈V (G) the following holds: if q ∈ X(p) with Y (q) = i then ∃ r ∈ X(p), where

r ̸= p, with l(r) = |V (G)|+ 1− i. The r and p are the twin vertices where Y is called a

38



balanced distance magic labelling. A balanced distance magic graph’s twin vertices can

not be next to one an other and that NG(r) = NG(p).[2]

Some results on balance distance magic labeling.

Results

• From two graphs G and H, if one of them is balanced distance magic and the other

graph is regular graph then the direct product of G and H is a balanced distance magic

graph. [15]

• If n or m is qual to 4 then the direct product of cycle graph Cm and Cn is balanced

distance magic graph. [15]

4.0.2 Group Distance Magic Labelling

Overview

The concept of Group Distance Magic Labelling (GDML) was initiated by Froncek. It is

extension of distance magic labelling. In GDML instead of taking labels for the elements of

graph from integers we take labels from the mathematical groups and these labels exhibits

some specific properties related to distances between them in graph. Uptill now many re-

searchers have worked on this topic and they explore that which graph holds such labelling

and their properties under different groups.[6]

If there is an abelian group Y ′ of order n and a one-one map from the vertex set ofY to

the group elements such thatΣy∈N G(x)l(y) = σ for all x ∈ V where σ is the magic constant,

then the graph Y is said to have GDML. This type of graph is known as Y ′ distance magic

graph.

Uptill know much work have been done on distance magic labelling of groups such as

tetravalent circulant graphs (the graphs included in this are finite, simple and undirected),

Group distance magic and antimagic hypercubes,GD magic graphs G[C4], Group Distance

Magic Labeling of Graphs and their Direct Product of antiprism graphs and many more.

Some of the results from different researches are as follows:

• Cn□ Cn is a group distance magic , for n greater than equal to 3 and is even. [2]
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• For even n the n-dimensional hypercube Qn is Z2
n -distance magic. [2]

• The G[Kn] is distance magic for any even n where G be an arbitrary regular graph.

• Let G and H be isomorphic to A3 and An where A3 and An be anti-prism graphs such

that n is equal to 3m,where m is greater than equal to 1 and m not equal to 3k,k ≥ 1.

Z3×Z4n be the module group of order 12n. Then the graph G×H admits a Z3×Z4n

- DM labeling.[2]

For order-n graph G and an order n abelian group H. l : V (G)→H so that for each x ∈V ,

w(x) = Σy∈N G(x)λ (y)=µ , where µ ∈ H a one-one map is used for group distance magic

labelling.Actually labels applied to graph elements are from abelian groups because they

provide labelling which is mostly very close to the group distnace magic labelling.We have

a proved result which states that if graph is a balanced distance magic graph than that graph

is also a group distance magic graph. Another proved fact is that every DM graph is GDM

graph under mudulo group Zn. bht the converse is not true. [2]

Here we have some proved results on magic graphs of Zn distance.

• It is not Zn-distance magic in graph G if it is an r-regular distance magic on n vertices

and r is not even. [16]

• Zn-distance magic graph is the direct product of cycle graphs Cm and Cn if m or n is

4,8 or m,n is equivalent to 0(mod4).[2]

• If G and H are regular graphs and G and H both have Zn balanced labeling then G ⊠

H has a Zn -balanced labeling. [16]

4.0.3 Group Distance Antimagic Labelling

A bijection f from V (G) to A in order that the weights of all vertices of G are different

pairwise is termed as distance anti-magic labeling for groups. We claim that each element

of A occurs as the weight of exactly one vertex of G since G and A have same cardinality.

The results for group distance antimagic are as follows:
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• A graph G r-regular with n even vertices. Therefore unless r is odd the graph G

cannot be A-distance antimagic for every abelian group A of order n with exactly one

involution.

• If n and r are both even in r regular graph of n vertices then G is not Zn -distance

antimagic.

• If we have r-regular graph G having n vertices and r = 2k+1 then the graph is not a

Zn-distance magic.

4.0.4 Applications

Group distance and anti magic labels are used in tournament scheduling.An unbaised or

equitable method of organising a competition in which each team plays each other once.In

network designing several types of networks are designed and optimised.

4.0.5 Orientable Group Distance Magic Labelling

Overview

From the idea of group distance magic labelling Brayn Freyberg intoduced orientable group

distance magic labelling.In this the vertices and edges of graph are labelled with the ele-

ments of group in a way that the group operations and distances related properties are

satisfied and labelling respect the orientation of graph. In OGDML each edge is given a

direction or orientation.For every edge there is a specific starting and ending vertex.

Just like group distance magic labelling alot of work have been done on orientable

group distance magic labelling also like Orientable Group Distance Magic Labeling of

Anti-Prism Graphs, OGDML of Direct Product of Anti-Prism Graphs with cycle, Ori-

entable Zn-distance magic regular graphs, Orientable Zn-distance magic labeling of the

cartesian product of two cycles. [16]

The proved results from above are as follows:

• Complete graph Kn when n is odd is orientable Zn-distance magic graph. [16]
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• Consider a directed anti-prism graph An and Z2n be the modulo group, then An admits

orientable Z2n-DM labeling.

The only distinction between the methods used to define GDML and OGDML is how the

weights of the vertices are determined.If we have an abelian group H and one-one map l

from the vertex set of G to the group elements then a directed graph G is orientable group

distance magic labeling iff Σy∈N+
G (x)

−→
l (y) − Σy∈N−

G (x)
−→
l (y).

4.0.6 Applications

Just like GDML the applications of OGDML are mathematical modelling, cryptography,algoarthim

designs, combinatorial designs.

In this chapter we allocate positive integers to vertices, edges and both in every labeling

so that the weight of graph’s vertices could be easily computed.We link positive integers to

modulo groups with respect to addition in next chapter creating a labeling technique called

group distance magic labeling. we will discuss the GDML of direct product of graphs

which is our main work and will prove some results.
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Chapter 5
Group Distance Magic Labelling of Graphs

In this chapter we provide the group distance magic labelling of direct product of prism

graph with cycle in the following theorems.In the theorem given below,we have the direct

product of prism graph with cycle Pn × C4 under mudulo group Z2mn for having a magic

constant.

Theorem 5.0.1. Let G ∼= Pn and H ∼= C4, where Pn is prism graph of order n and C4 is

cycle graph of order 4 and Z8n be the mudulo group of order 8n.Then the direct product of

graph G × H admits a Z8n distance magic labelling ∀ n ≥ 3.

Proo f

The vertex and edge set of Pn and C4 are as follows:

V (Pn) = { xt ,yt |0 ≤ t ≤ n−1 },

E(Pn) = { xtxt+1,ytyt+1,xty|0 ≤ t ≤ n−2 } ∪ {x0xn −1,y0yn −1,xn −1yn−1 },

V (C4) = {x′t ,0 ≤ t ≤ 4−1 },

E (C4) = {x′tx
′
t+1,0 ≤ t ≤ 4−2 } ∪ {x′0x′4−1},

By using concept of direct product we get the vertex set below representing Pn × C4,

V (Pn × C4) = {(x′tx
′
r),(yt ,x′r)|0 ≤ t ≤ n−1,0≤ r ≤ 4-1 }.

Define: l : V (Pn × C4) → Z8n under following way

l (xt ,x′r) = 2t +4nr, 0 ≤ r ≤ 1

l (xt ,x′r) = (4nr −1)mod(8n)−2t, 2 ≤ r ≤ 3

l (yt ,x′r) = 2t +2n(1+2r), 0 ≤ r ≤ 1

l (yt ,x′r) = (4nr−12n+1)mod(8n)−2t, 2 ≤ r ≤ 3

In the above graph Pn × C4 we have two types of vertices which are representing the

vertices and that are (xt ,x′r) and (yt ,x′r). Now we will use the labeling l to find the weight

of each vertex.
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The vertex type (xt ,x′r) is adjacent to following vertices:

(xt+1,x′r),(xt+(n−1),x
′
r+1),(yt ,x′r+1),(xt+1,x′r+2),(xt+(n−1),x

′
r+2),(yt ,x′r +2)

and the vertex type (yt ,x′r) is adjacent to following vertices:

(xt ,x′r+1),(xt+(n−1),x
′
r+1),(yt+1,x′r+1),(xt ,x′r+2),(xt+(n−1),x

′
r+2),(yt+1,x′r +2)

Weight of vertices type (xt ,x′r) and (yt ,x′r) can be calculated in such a way,

for r = 0 ≤ r ≤ 1

w(xt ,x′r) = (xt+1,x′r),(xt+(n−1),x
′
r+1),(yt ,x′r+1),(xt+1,x′r+2),(xt+(n−1),x

′
r+2),(yt ,x′r +2)

w(xt ,x′r) = l(2(t+1)+4n(r+1))+ l(2(t+n−1)+4n(r+1))+ l(2t+2n(1+2(r+1)))+

l(2(t +1)+4n(r+2)+2)+ l(2(t +1)+(n−1)+4n(r+2))+ l(2t +2n(1+2(r+1)))

for r = 2 ≤ r ≤ 3

w(xt ,x′r) = (xt+1,x′r),(xt+(n−1),x
′
r+1),(yt ,x′r+1),(xt+1,x′r+2),(xt+(n−1),x

′
r+2),(yt ,x′r +2)

w(xt ,x′r) = l((4n(r+1)−1)mod8n−2(t +1))+ l((4n(r+1)−1)mod8n−2(t +n−1))+

((4n(r + 1)− 12n+ 1)mod8n− 2t)+ ((4n(r + 2)− 1)mod8n− 2(t + 1))+ ((4n(r + 2)−

1)mod8n−2(t +n−1))+((4n(r+2)−12n+1)mod8n−2t)

for r = 0 ≤ r ≤ 1

w(yt ,x′r)= (xt ,x′r+1),(xt+(n−1),x
′
r+1),(yt+1,x′r+1),(xt ,x′r+2),(xt+(n−1),x

′
r+2),(yt+1,x′r+2)

w(yt ,x′r) = l(2t+4n(r+1))+ l(2(t+n−1)+4n(r+1))+ l(2(t+1)+2n(1+2(r+1)))+

l(2t +4n(r+2))+ l(2(t +n−1)+4n(r+2))+ l(2(t +1)+2n(1+2(r+1)))

for r = 2 ≤ r ≤ 3

w(yt ,x′r)= (xt ,x′r+1),(xt+(n−1),x
′
r+1),(yt+1,x′r+1),(xt ,x′r+2),(xt+(n−1),x

′
r+2),(yt+1,x′r+2)
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w(yt ,x′r) = l((4nr+4n−1)mod8n−2t)+ l((4nr+4n−1)mod8n−2t −2n+2)+((4nr−

8n+1)mod8n−2t−2)+((4nr+8n−1)mod8n−2t)+((4nr+8n−1)mod8n−2t−2n+

2)+((4nr−4n+1)mod8n−2t −2)

The magic constant for Pn ×C4 under modulo Z8n is:

k = (2mn−3)

Following are the examples of above theorem.

Example.5.0.1. Direct product of graph P3 × C4 under mudulo group Z24 having

magic constant 21.

Figure 5.1: P3 × C4
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Figure 5.2: Labelling of Direct Product of graph P3 × C4 under Z24

Example.5.0.2. Direct product of graph P4 × C4 under mudulo group Z32 having

magic constant 29.

Figure 5.3: P4 × C4
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Figure 5.4: Labelling of Direct Product of graph P4 × C4 under Z32

Example.5.0.3. Direct product of graph P5 × C4 under mudulo group Z40 having

magic constant 37.

Figure 5.5: P5 × C4
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Figure 5.6: Labelling of Direct Product of graph P5 × C4 under Z40

Example.5.0.4. Direct product of graph P8 × C4 under mudulo group Z64 having

magic constant 61.

Figure 5.7: P8 × C4
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Figure 5.8: Labelling of Direct Product of graph P8 × C4 under Z64

Theorem 5.0.2. Let G ∼= Pn and H ∼= Cm, where Pn is prism graph of order 2n and Cm

is cycle graph of order m and Zm ×Z2n be the modulo group of order 2nm such that

gcd(n,m) ̸= 1.Then the direct product of graph G × H admits a Zm ×Z2n distance magic

labelling ∀ n =3 and m = ≥ 4.

Proo f

The vertex and edge set of Pn and Cm are given below.

V (Pn) = {xixi+1,yiyi+1,xiyi,n ≤ i ≤ m}∪{x0x2,y0y2}

E (Cm) = {x′ix
′
i+1,n ≥ i ≥ m}∪{x′0x′i−1}
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Given below is the labeling of graph P3 ×C3 under Z3×Z6 abd P3 ×C4 under Z3×Z8.

Figure 5.9: Labeling of Direct Product of P3 × C3 under Z3 ×Z6

Figure 5.10: Labeling of Direct Product of P3 × C4 under Z3 ×Z8
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Chapter 6
Conclusion

In our research we look into labeling techniques of group distance magic labeling.Modulo

groups and their products are discussed using GDML. Basically we have tried to eastablish

a bridge between graph theory and group theory both.

In the first chapter we have discussed how the subject of graph theory enter in the field

of mathematics, what is the motivation behind it. Which type of researches and work have

been done so far. What its role in our lives and how it help us. Its different applications in

different fields.

In the second chapter we have a brief discussion on what are graphs and different com-

ponents of graphs. We also studied different types of graphs, different operations and

products on them and how they are applicable.

In third chapter we discussed graph labeling in detail.Overview of graph labeling like

from where the idea of graph labeling came and how the different researches have been

done on it. We also discussed different types of labeling which are graceful labeling,harmonious

labeling, magic labeling and anti-magic labelings with the help of different graphs.

In fourth chapter we talked on group based labelings and its types that are group dis-

tance magic labeling, group distance anti-magic labeling and orientable group distance

magic labeling. We have also discussed some proved results of these labelings and their

applications.

In the fifth chapter, which is our main chapter we worked on group distance magic

labeling of direct product of prism graphs. We generalized the direct product of prism graph

with cycle Pn ×C4 under modulo group Z2mn. Then we have discussed the examples of it

like P3×C4 under modulo group Z24, P4×C4 under modulo group Z32 and P5×C4 under

modulo group Z40. We have calculate the magic constant and weight of their vertices.We

have also find the direct product of prism graph with cycle in which prism graph is of order

2n and cycle is of order m under modulo group Zm ×Z2n of order 2nm with gcd(n,m) ̸= 1

∀n = 3 and m ≥ 4.
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