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Abstract

On Cluster Analysis of Some Portfolio Optimization

By

Muhammad Bilal

The classic mean-variance portfolio optimization approach is criticized in large part for its

propensity to overstate estimate error. An estimated inaccuracy of a few percent can skew

the entire package. The Black-Litterman technique (Bayesian method) and the resampling

method are two common approaches to solving this problem. A more recent approach to the

issue’s solution is the clustering method. By clustering, we initially combine the stocks that

have a strong correlation and handle the group as a single stock. Following the grouping

of the stocks, we will have a few stock clusters. For these clusters, we do the standard

mean-variance portfolio optimization. By using the clustering approach, the influence of

estimating error may be minimized and the portfolio’s stability can be increased. In this

project, we’ll examine how it functions and run experiments to see if clustering techniques

enhance the portfolio’s performance and stabilities.
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Chapter 1
Introduction

Individuals and businesses use financial investments throughout the world. A financial in-

vestment business that manages investor cash is one example of an organization that makes

investments for a variety of reasons. As a result, the players conduct their investments using

varying requirements, objectives, and strategies. Both simple techniques and sophisticated

algorithms can be used to generate investment strategies. All investors, nevertheless, share

the same goal of obtaining a high return with little risk. It is more difficult to achieve such

a portfolio.

Analyzing data is the initial stage in developing an investment plan. Financial data, which

is frequently gathered from day-to-day activities, must typically be processed to make it

easier to handle and analyze. In addition, the data must be analyzed using one or more

methodologies, taking into account some factors. Risk is one thing that needs to be taken

into account. While some performers can handle it well, others can’t stand it. As previ-

ously said, the goal is to strike the ideal balance between risk and reward. There are several

methods for determining and managing risk. Diversification is a well-known and often

utilized strategy for managing portfolio optimization. Therefore, by building more diverse

portfolios, the risk can be decreased. By incorporating riskier data from several sources

into a portfolio, diversification ultimately aims to lower portfolio volatility.

Theoretically, a cluster analysis of financial assets, including bonds, futures, and stocks,

can yield a diversified portfolio. Cluster analysis is applied in many fields, and prior studies

suggest that it may also be suitable for financial objectives. Disorganized data is system-

atized into subsets of groups, or clusters, using a cluster analysis. The idea behind cluster

analysis is that while the distance between clusters should be considerable, the difference,

or more particularly, the gap between stocks inside a cluster, should be as minimal as fea-

sible. Therefore, the goal of cluster analysis is to identify correlations within the data.

Clusters of related data sets are formed by grouping the most comparable data. Invest-

ment plans can then be developed using these clusters. To identify a trustworthy technique,

1



some alternative cluster analysis techniques will be contrasted and examined. The invest-

ment strategy will be theoretically reviewed and appraised, and the cluster analysis will be

assessed using data sets that Nordea has given.

One of the most serious problems in asset management is the portfolio optimization prob-

lem [12]. Numerous additional research studies have focused on various elements of portfo-

lio optimization from both a theoretical and applied perspective since Markowitz’s ground-

breaking work [37]. Here we focus our attention on the role of the correlation coefficient

matrix in portfolio optimization. Because the asset return time series has a finite duration,

there is inevitably a statistical uncertainty associated with the correlation matrix calcula-

tion. Recently, quantifying the level of statistical uncertainty in a correlation matrix has

been the subject of several contributions in the econophysics literature. A method to fil-

ter the information in the correlation coefficient matrix that is robust for the inevitable

statistical uncertainty has recently been developed using the RMT quantification of the sta-

tistical uncertainty associated with the estimation of the correlation coefficient matrix of

a finite multivariate time series (in the econophysics literature it has been used as noise

dressing)[1]. The process of filtering has yielded correlation matrices, which have been

employed in portfolio optimization. According to some research, the difference between

the realized and anticipated optimum portfolios, assuming flawless forecasting of future

returns and volatilities, is less for the filtered correlation matrix than for the original one,

given a specific level of portfolio return.

Other correlation coefficient matrix filtering techniques, carried out using correlation-based

clustering techniques, have also been presented in the econophysics literature in recent

years. The correlation coefficient matrix, which is indicative of the complete matrix and

frequently less impacted by statistical uncertainty and thus more stable than the entire ma-

trix during the system’s temporal development, is another set of information selected by

these approaches [17, 29, 44, 30, 19, 11, 48, 43, 40, 47, 20].

In this thesis, we examine how various filtering techniques applied to the correlation coef-

ficient matrix affect the portfolio optimization process. We specifically take into account

correlation-based clustering processes and RMT-based filtering procedures. The structure

of this thesis is outlined as follows.
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In Chapter 2, we have given an overview of descriptive statistics, which are useful for sum-

marising data. To start, we defined the many kinds of data that may be found, discussed

why data collecting is necessary, and listed some popular sources. In Chapter 3, we pro-

vide a concise overview of the mean-variance optimization problem, laying out the notation

used and summarizing the challenge related to estimating the correlation matrix. In Chapter

4, we describe the clustering algorithms used to perform the portfolio optimization. These

algorithms are average linkage and single linkage. we describe two methods based on these

clustering algorithms to build asset portfolios that are robust and reliable.

3



Chapter 2
Basic Definitions

In this chapter, We have given an overview of descriptive statistics, which are useful for

summarising data. We started by outlining the reasons for data gathering, characterizing the

many kinds of data that may be encountered, and offering a few standard resources for data.

We defined distribution and described how to create cumulative, relative, and frequency

distributions for data. We also showed how to graphically represent the data distribution

using histograms. Then, we discussed location metrics for data distribution, such as mean,

median, mode, and geometric mean, and measures of variability, such as range, variance,

standard deviation, and coefficient of variation. Measures of the two variables’ connection

were discussed. The relationship between variables may be seen via a scatter plot. A single

number can represent the linear relationship between variables: covariance and correlation

coefficient.

2.1 Types of Data

We will discuss some categories of data. In statistics and data analysis data can be classified

into many categories according to their nature, attributes, and methods of collection or

representation. Among the main categories of data are:

2.1.1 Data

Definition 1. Information, facts, or observations that are gathered, documented, or dis-

played for examination, reference, or deduction are referred to as data.

It can take on several forms, including as text, numbers, pictures, sounds, or any other

interpretable or processable format.

Data provides the basis for inference, insight generation, and well-informed decision-

making in a variety of domains, including business, science, research, and daily life. Based

on its attributes, It may be divided into a variety of categories, such as cross-sectional data,

time series data, qualitative or quantitative data, population data, sample data, and more.
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2.1.2 Population Data

Definition 2. The term ”population data” describes the entire group of people, things, or

components that have particular qualities and are relevant to a particular investigation or

analysis. It speaks for the whole group under investigation.

For instance, all adult men in a nation would make up the population if you were research-

ing the average height of all adult males in that nation.

Another instance may be the complete group of clients who have purchased a certain item

from a business.

In statistics and research, an understanding of the population data is crucial since it serves

as the foundation for inferences, forecasts, and generalizations on the features of the wider

group under investigation.

2.1.3 Sample Data

Definition 3. A subset of data chosen from a broader dataset or population is referred to

as sample data. This smaller set was selected such that it accurately reflects the traits or

qualities of the total population.

Making assumptions or judgments about the larger population using sampling information

allows for conclusion-making without requiring full dataset analysis.

For instance, Consider a situation where you need to find the average age of every worker

at a firm that employs thousands of people. Rather than gathering age data from each em-

ployee, you may choose to sample, say, 200 people.

This sample was selected to serve as a miniature representation of the company’s person-

nel, taking into account different departments, job titles, and levels of experience. You may

estimate or conclude the average age of all corporate employees by examining the age data

from this sample.

For any conclusions obtained from the sample to be appropriately applied to the wider

group, the sample data should ideally be typical of the population. Selecting samples that

most closely reflect the characteristics of the population involves using a variety of sam-

pling approaches, such as stratified sampling or random sampling.

5



2.1.4 Quantitative Data

Definition 4. Quantitative data refers to information that is expressed in numerical terms

and can be measured or counted. This kind of data can be expressed as numerical values

and deals with numbers or quantities.

It is frequently used to carry out mathematical computations, comparisons, and analyses

in statistical analysis and research.

Examples of quantitative data include:

1. Measurements

(a). Height: 165 centimeters

(b). Weight: 68 kilograms

(c). Temperature: 25 degrees Celsius

2. Counts

(a). Number of books in a library: 500

(b). Daily sales revenue: $2,500

(c). Population of a city: 1,000,000

Quantitative data can be further categorized into two subtypes

Discrete Data:

Discrete data is made up of countable whole numbers.

For instance, the number of automobiles in a parking lot or the number of pupils in a class-

room.

Continuous Data:

Measurements that fall within a certain range might be considered continuous data.

For instance,

height, weight, temperature, and time.

Quantitative data allows for precise mathematical operations, statistical analyses, and

graphical representations, aiding in the understanding and interpretation of numerical pat-

terns, relationships, and trends within the data.
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2.1.5 Categorical Data

Definition 5. Qualitative or categorical data also referred to as characteristic or attribute

data, depicts traits or attributes that fall into particular groupings or categories. Categor-

ical data is made up of non-numeric information and is often descriptive, in contrast to

quantitative data, which includes numerical values.

It is used to group and classify observations according to characteristics or labels.

Examples of categorical data include:

1. Nominal Data:

(a). Colors: green, blue, and red.

(b). Relationship Status: Not married, married, divorced

2. Ordinal Data:

(a). Educational Levels: Bachelor’s degree, master’s degree, and high school

(b). Survey Responses: Poor, fair, good, excellent

Categorical data is often utilized in a variety of sectors, including the social sciences, mar-

ket research, and demography.

2.1.6 Cross-Sectional Data

Definition 6. Information gathered from various people, entities, or subjects at one mo-

ment or over a predetermined period is referred to as cross-sectional data.

It takes a momentary snapshot of the observations and does not follow changes or trends

for the same subjects over time.

For instance, Consider carrying out a family income survey in a specific city in January

2023. Cross-sectional data is what was gathered at this particular period from different

homes. The income of each family is recorded at that specific instant, giving a snapshot of

the income distribution among various families in that city at that specific moment.

Another example could be a study that collects data on various companies’ earnings, costs,

and workforce size within a given industry sector on a given date, without accounting for

changes over time.
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Cross-sectional data is useful for examining traits, distinctions, or connections between

various people or things at a certain moment in time. On the other hand, it misses changes

or advancements over time for the same individuals, This may be examined using time-

series or longitudinal data that track changes over a certain amount of time.

2.1.7 Time Series Data

Definition 7. A time series is a collection of measurements or observations that are made,

recorded, or observed throughout time at regular intervals that are evenly spaced apart.

This type of analysis uses chronologically ordered data points, often at regular intervals,

to monitor changes, trends, or patterns across time in a particular event or variable.

Examples of time series data include:

1. Stock Prices: Daily closing prices of a company’s stock recorded over several months

or years.

2. Temperature Readings: Hourly temperature measurements recorded over a year at a

weather station.

3. Sales Figures: Monthly sales data for a product recorded over several years.

4. Population Growth: Yearly census data tracking population changes in a city over

decades.

Time series data analysis involves examining, modeling, and forecasting the behavior of

the variable being measured over time. Statistical techniques and methods such as trend

analysis, and moving averages, are commonly used to analyze and make predictions based

on time series data.

2.2 CREATING DISTRIBUTIONS FROM DATA

Distributions, which indicate the frequency with which particular values for a variable oc-

cur in a data collection, aid in summarising several features of a data set. For both quantita-

tive and categorical data, distributions may be generated, and they help the analyst measure

8



variance.

2.2.1 Frequency Distributions for Categorical Data

For categorical data, frequency distributions show the number or percentage of observa-

tions that fit into various categories. The distribution of qualitative or categorical variables

may be summarised and understood using this distribution, which displays the frequency

or occurrence of each category within a dataset.

Procedure for producing a frequency distribution for classification data:

1. List Categories: Identify and list all distinct categories or groups present in the dataset.

2. Count Frequencies: Count the number of occurrences of each category in the dataset.

3. Create a Table: Create a table or list that displays the categories along with their corre-

sponding frequencies or counts.

Frequency distributions help in summarizing categorical data, identifying the most com-

mon categories, and understanding the distribution or variation among different groups.

Visual representations such as bar charts or pie charts are often used to present frequency

distributions graphically, providing a clear visualization of the distribution of categorical

data.

2.2.2 Relative Frequency and Percent Frequency Distributions

Frequency distribution variants that are used to describe categorical data include percent

and relative frequency distributions. Along with the counts or frequencies of the categories,

they also provide the percentage or proportion of each category to the overall number of

observations, which adds more information.

9



Relative Frequency Distribution: The percentage or share of observations in each cate-

gory to the total number of observations in the dataset is shown by this distribution. By

dividing the frequency of every category by the total number of observations, it is com-

puted.

Percent Frequency Distribution: The percentage of observations in each category as a

percentage of all observations is shown in this distribution. The percentage of observations

in each category as a percentage of all observations is shown in this distribution.

Example 1. consider the same dataset of survey responses on preferred modes of trans-

portation:

Frequency Distribution:

Relative Frequency Distribution:

Percent Frequency Distribution:

To facilitate comparisons and interpretations, relative frequency and percent frequency

distributions provide a more lucid picture of the percentage of each category in the dataset.

10



They are especially helpful for displaying the relative weight or frequency of various

dataset types.

2.2.3 Frequency Distributions for Quantitative Data

Distributions of frequencies in quantitative data organize numerical values into intervals or

ranges and display the count or frequency of observations falling within each interval. This

distribution allows you to summarize and understand the distribution of numerical data by

grouping values into classes or bins.

Steps to create a frequency distribution for quantitative data:

1. Determine the Number of Intervals (Bins): Decide on the number of intervals or

ranges to divide the data into. Commonly used rules include the square root rule to deter-

mine the number of intervals.

2. Calculate Interval Width: Find out how wide each interval is. It is computed by

dividing the number of intervals by the range of the data.

3. Create Intervals: Create non-overlapping intervals that cover the range of the data.

Ensure that each value falls into exactly one interval.

4. Count Frequencies: Count the number of observations falling within each interval.

5. Create a Table or Histogram: Present the intervals along with their corresponding

frequencies.

For example, consider a dataset of test scores:

Test Scores: 65, 72, 80, 85, 78, 90, 92, 68, 76, 82, 88, 72, 96, 85, 78, 82, 90, 94

Assuming we want to create a frequency distribution with 5 intervals:

(i). Identify the data’s range: Range: = Highest value - Lowest value = 96 - 65 = 31

(ii). Calculate the interval width: Interval width = Range / Number of intervals = 31 / 5 =

6.2 (approx. 6)

Frequency Distribution:
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2.2.4 Histograms

Definition 8. A graph of neighboring rectangles built on an XY plane is called a histogram.

It’s a frequency distribution graph. In practical use, histograms are used to depict both dis-

crete and continuous frequency distributions.

The vertical columns of a histogram are drawn without any gaps between them, which sets

it apart from a bar graph.

Construction of a Histogram

The table below displays the estimated millimeter lengths (mm) of forty leaves sampled

from various sections of a given species.

Represent the data in the form of a histogram.

The horizontal and vertical axes are drawn to produce a histogram. Put ”Length of the

leaves” as the graph’s title. List the intervals across the horizontal axis on an appropriate

scale and label the horizontal axis ”Length (mm)”. Write ”Number of leaves” on the ver-

tical axis. Mark the x-axis by fives. Draw a vertical column corresponding to the proper

frequency value for each interval on the horizontal axis. Remember that there are never

any gaps between vertical columns on a histogram.

12



Figure 2.1: Histogram

2.2.5 Cumulative Distributions

Definition 9. When an observation in a dataset falls below a given value, the cumulative

count or proportion is displayed via cumulative distributions, also known as cumulative

frequency distributions.

They provide a running total of frequencies as values increase, showing the accumulation

of observations up to a particular point in a dataset.

To create a cumulative distribution:

1. Calculate Cumulative Frequencies: Start by organizing the data in ascending order.

2. Count Frequencies: For each value, determine the number of observations up to and

including that value.

3. Create a Table or Graph: Present the values along with their corresponding cumulative

frequencies.

Example 2. For the given data, create a Cumulative frequency distribution.

13



The cumulative frequency distribution is constructed below

In the table, each value represents the cumulative count of observations up to that point in

the data.

2.3 MEASURES OF LOCATION

Definition 10. Measures of location, also known as measures of central tendency, are sta-

tistical metrics used to describe the central or typical value in a data set.

They provide a single numerical number that indicates the central tendency of the data.

The following are the four main location metrics such as:
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2.3.1 Mean (Arithmetic Mean)

Definition 11. The Arithmetic Mean, sometimes referred to as the Mean, is a metric that

is calculated by dividing the total of all the values (observations) of the variable by the

number of observations. X is used to represent the arithmetic mean defining symbols as

follows:

A.M.= X =
∑X

n
=

Sum of all values of observation
No. of observation

The formula for the arithmetic mean of n values x1 + x2 + x3 + ...+ xn is:

Arithmetic mean = X =
x1 + x2 + x3 + ...+ xn

n
Example 3. Examine a dataset that shows a collection of people’s ages:

Ages: 25, 30, 35, 40, 45

To calculate the arithmetic mean:

1. Add all the values together:

25+30+35+40+45 = 175

2. Count the number of values in the dataset, which is 5 in this case.

3. The sum divided by the total number of values:

Arithmetic mean = X̄ =
175
5

= 35

Therefore, the arithmetic mean (or average) age of this group of people is 35 years old.

The arithmetic mean is widely used due to its simplicity and interpretability. Its sen-

sitivity to the dataset’s extreme values, or outliers, can have a big impact on the mean.

Because of this, it’s crucial to take into account other central tendency measurements like

the median or mode.
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2.3.2 Median

Definition 12. The middle observation in a collection of arranged data is called the me-

dian.

A statistical measure of central tendency known as the median is used to reflect the middle

value when values in a dataset are arranged in either ascending or descending order. With

half of the values lying below and half above the median, the dataset is evenly divided in

half.

Case.1 The formula below can be used to get the median, or middlemost observation,

of a collection of data ordered in order of magnitude when the number of observations is

odd.

Median =

(
n+1

2

)th

observation

Case.2 The median, which is the average of the two middle observations, is found when the

number of observations in a set of data in order of magnitude is even. that is, median is

average of
(n

2

)th and
(n

2 +1
)th values.

Median = size of
1
2

[(n
2

)th
+
(n

2
+1
)th
]

observation

Example 4. let’s take a dataset representing the incomes of ten individuals in a community:

Incomes: $25,000, $30,000, $35,000, $40,000, $45,000, $50,000, $55,000, $60,000, $65,000,

$70,000

To find the median:

1. Arrange the incomes in ascending order: $25,000, $30,000, $35,000, $40,000, $45,000,

$50,000, $55,000, $60,000, $65,000, $70,000

2. Since there are ten values (an even number), the median will be the average of the two
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middle values.

3. The two middle values are $45,000 and $50,000.

4. The median income would be the average of these two values:

Median =
45,000+50,000

2
=

95,000
2

= 47,500

Median = 47,500

2.3.3 Mode

Definition 13. In statistics, The mode of a dataset is the value that appears the most fre-

quently. That’s the observation or category that shows up most frequently.

Example 5. Let us consider a dataset that shows students’ test scores:

Scores: 78, 85, 92, 78, 75, 85, 78, 90, 78

The most common number in this collection is 78, which occurs four times.

Consequently, the mode of this data set is 78.

To determine the most frequent or prominent value of data, the mode is especially helpful.

The mode explicitly indicates the value that happens most frequently, instead of the mean

(average) or median (middle value), which considers all values equally. Depending on if

two or more values occur with the same greatest frequency, a dataset may have different

modes (bimodal, trimodal, etc.).

2.3.4 Geometric Mean

Definition 14. The geometric mean of a dataset is the nth positive root of the product of the

x1,x2,x3, ...,xn observations. In symbols, we write

G.M.= (x1,x2,x3, ...,xn)
1/n

OR

G.M.= n
√

x1.x2.x3.....xn
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Example 6. Consider a set of values representing the growth rates of a company over five

years:

5%,8%,6%,7%,and9%

To find the geometric mean:

1. Multiply all the values together: 5%×8%×6%×7%×9%

2. There are five values, so take the fifth root of the product: 5
√

%×8%×6%×7%×9%

Calculating the product gives 0.05×0.08×0.06×0.07×0.09 = 0.0001512 Then the fifth

root of 0.0001512 is approximately 0.0651 or 6.51% when converted to percentage.

So, the geometric mean of these growth rates over five years is approximately 6.51%

2.4 MEASURES OF VARIABILITY

Definition 15. The spread or dispersion of data points within a dataset is described by

measures of variability, which are also referred to as measures of dispersion.

They offer information on the distribution and variability of the dataset and measure the

degree to which individual data points vary or diverge from the central tendency (mean,

median, or mode).

Common measures of variability include:

2.4.1 Range

Definition 16. The simplest measure of variability is the range, which is the difference be-

tween a dataset’s highest and lowest values. Although it might be vulnerable to outliers, it

provides a broad idea of the dispersion.

2.4.2 Variance

Definition 17. The average squared departure of the data points from the mean is mea-

sured by variance. The average of the squared deviations between each data point and the

mean is computed.
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Greater variability is indicated by a bigger variance, but it’s not directly interpretable in

the original units of the data.

2.4.3 Standard Deviation

Definition 18. The average departure of data points from the mean is expressed as the

standard deviation, which is the square root of the variance. Because it gives a clearer

picture of dispersion and is in the same units as the original data, it is commonly utilized.

2.4.4 Coefficient of Variation

Definition 19. An indicator used to compare is the coefficient of variation (CV) the vari-

ability or dispersion of data relative to its mean, especially when dealing with different

datasets with varying scales or units.

It is computed as the percentage representation of the standard deviation to the mean.

The coefficient of variation formula is:

Coefficient of Variation (CV) =
(

StandardDeviation
Mean

)
×100

To demonstrate how to calculate the coefficient of variation, let’s look at an example:

Suppose we have two datasets representing the heights of two groups:

Group A:

(i). Mean height: 160 cm

(ii). Standard deviation: 8 cm

Group B:

(i). Mean height: 175 cm

(ii). Standard deviation: 12 cm

Calculating the coefficient of variation for each group:

For Group A:

CV for Group A =

(
8

160

)
×100 = 5%
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For Group B:

CV for Group B =

(
12

175

)
×100 = 6.86%

In this example, Group A has a coefficient of variation of 5%, indicating that the standard

deviation is 5% of the mean height. Group B has a higher coefficient of variation at 6.86%,

suggesting relatively higher variability in heights compared to the mean when compared to

Group A.

2.5 MEASURES OF ASSOCIATION BETWEEN TWO VARIABLES

Measures of association quantify the relationship or strength of association between two

variables in a dataset. By revealing patterns, directions, and strengths of relationships be-

tween variables, they aid in the understanding of how changes in one are related to changes

in another.

2.5.1 Scatter Charts

Definition 20. Graphs called scatter plots show the connection between two variables in a

dataset.

It shows data points as a two-dimensional plane or as a Cartesian system. Plotting the

independent variable, or attribute, on the X-axis corresponds to plotting the dependent

variable on the Y-axis. These images are sometimes called scatter graphs or scatter dia-

grams.

Here are some instructions for making a scatter diagram.:

1. Gather Bivariate Data.

2. Data should be displayed as a chart with the dependent variable always in the second

column and the independent variable always in the first column.

3. Convert the table’s rows into data points.

4. Label the independent variable on the x-axis and the dependent variable on the y-axis

to begin producing a graph.

5. Based on the data gathered, choose the suitable scale for each axis (if the data spans
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from 0 to 10, consider a scale of 1; if the data extends from 0 to 500, consider a scale of

50). To ensure that the scale will appropriately display the data, experiment with it..

6. Plot the points.

Here is an example. For this example, examine the depth that a scuba diver goes versus

water temperature.

First, gather the data. The following data has been collected: at 10 ft down the water

temperature is 80F, at 20 ft down it is 77°F, at 30 ft down it is 70°F, at 40 ft down it is at

68°F, and at 50 ft down it is 67°F.

Now organize that information into a table.

Now that a table has been created, organize this information into the following points: (10,

80), (20, 77), (30, 70), (40, 68), (50, 67).

Finally, draw the graph, label the axes, create an appropriate scale, and plot the points.

Remember to always label the axes and give the scatter plot a title.
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2.5.2 Covariance

Definition 21. A statistical metric used to characterize the connection between two vari-

ables is covariance. It shows how much two random variables vary simultaneously.

The formula for the sample covariance between two variables X and Y in a dataset with n

observations is:

Cov(X ,Y ) =
1

n−1

n

∑
i=1

(Xi − X̄)(Yi − Ȳ )

Where:

Xi and Yi are individual data points.

X̄ and Ȳ are the means of X and Y respectively.

n is the number of observations.

Interpreting covariance:

(i). Positive covariance indicates that the two variables tend to rise together as one in-

creases. On the other hand, as one declines, the other also tends to decline.

(ii). If the covariance is negative, it means that one variable tends to decrease when the

other grows, and vice versa.

(iii). There isn’t a linear relationship between the variables if the covariance is 0.

2.5.3 Correlation Coefficient

Definition 22. The correlation coefficient is a statistical measure that may be used to deter-

mine the direction and strength of a linear relationship between two continuous variables.

This assesses the degree to which the connection between the variables may be accurately

represented by a straight line.

Pearson’s correlation coefficient, which is frequently represented by the symbol r, is the

most often used. It has a range of -1 to 1:

(i). A complete positive linear connection is shown by r = 1, meaning that if one variable

grows, the other increases proportionately.
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(ii). A complete negative linear connection is shown by r = −1, meaning that when one

variable grows, the other drops proportionately.

(iii). There is no linear relationship between the variables when r = 0.

The formula for Pearson’s correlation coefficient is:

r =
∑(Xi − X̄)∑(Yi − Ȳ )√

∑(Xi − X̄)2
√

∑(Yi − Ȳ )2

Where:

Xi and Yi are individual data points.

X̄ and Ȳ are the means of X and Y respectively.

The covariance is effectively normalized by the square roots of the sum of squares in the

denominator.
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Chapter 3
Markowitz’s Portfolio theory

In this chapter, we covered nonlinear optimization models. Permitting nonlinear terms sig-

nificantly expands the pool of significant applications that may be modeled as optimization

problems because so many business analytics applications incorporate nonlinear functions.

Nonlinear models may be used to solve a wide range of issues in portfolio optimization,

option pricing, marketing, economics, facility placement, forecasting, and scheduling.

3.1 Introduction

A little over seventy years ago, an economics doctoral student at the University of Chicago

was looking for a topic for his dissertation when he stumbled upon a stockbroker, who

suggested he research the stock market. Harry Markowitz’s ideas led to the development

of a theory that changed investor behavior and established the basis of financial economics.

His achievements earned him a share of the 1990 Nobel Prize in Economics. A fundamen-

tal tenet of economics is that all economic choices include trade-offs since resources are

scarce. The investor faces a trade-off between risk and projected return, which Markowitz

recognized. Choosing which securities to hold is only one aspect of investing; another is

deciding how to allocate the investor’s money among the assets. According to the title of

Markowitz’s seminal study published in the Journal of Finance in March 1952, this is the

”Portfolio Selection” problem. By extending the use of linear programming techniques,

Markowitz develops the critical line approach in that study and later publications.

Using variance or standard deviation to measure risk, the critical line technique determines

all potential portfolios that minimize risk for a given level of expected return and maximize

anticipated return for a given level of risk. The standard deviation vs. anticipated return

space displayed by these portfolios indicates the efficient frontier. An investor must weigh

risk vs expected return while constructing his portfolio, and this trade-off is represented by

the efficient frontier. Bound to be well-diversified are the majority of the efficient frontier.

The rationale for this is that diversity is an effective way to lower risk.
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Mean-variance analysis was created by Markowitz to choose a portfolio of common equi-

ties. The use of mean-variance analysis in asset allocation has grown within the past 20

years. The process of choosing an investing portfolio in which each element is an asset

class rather than a single securities is known as asset allocation. Mean-variance analysis

is more suited for asset allocation than stock portfolio selection. Mean-variance analysis

requires knowledge of not only the expected return and standard deviation for each asset

but also the correlation of returns for each pair of assets. While a stock portfolio selec-

tion issue may involve hundreds of stocks (and therefore thousands of correlations) (e.g.,

stocks, bonds, cash, real estate, and gold), an asset allocation problem typically involves

a small number of asset classes. Furthermore, there is an opportunity to reduce portfo-

lio risk overall due to the lack of correlation among assets. Since stocks frequently move

in tandem, the benefits of variety within a stock portfolio are constrained. On the other

hand, there is typically little to no connection across asset classes, and occasionally even a

negative correlation. To find significant chances for risk reduction through diversification,

mean-variance is a potent instrument in asset allocation.

3.2 Markowitz Mean-Variance Portfolio Theory

3.2.1 Portfolio Return Rates

Definition 23. In the financial market, an asset is something that is frequently bought and

sold.

Let’s say we buy an asset for y0 dollars one day and sell it for y1 dollars the next. We

refer to the ratio as

R =
y1

y0

the return on the asset.

The asset’s rate of return is determined by
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r =
y1 − y0

y0
= R−1

. Therefore,

y1 = Ry0

and

y1 = (1+ r)y0

Occasionally, we might be able to sell a non-owned asset. We call it short selling. In a

way, it functions like this. Let’s say you want to short sell or short a specific stock. To

begin with, find out if every stock that a customer of your stock broker has is owned by

the broker’s firm. You can ask the brokerage to sell any amount of shares up to the amount

they possess if they do hold (or manage) some stock. The amount of the debt from this

transaction, which is the number of stocks they sell on your behalf, is credited to your ac-

count. In other words, rather than being expressed in dollars, The number of stocks you

are shorting—that is, the number of stocks by which your account is short—expresses your

debt. This short sale is shown as a negative figure associated with the shorted asset on your

account asset sheet. Recall that the amount of stocks or other assets that are shorted, rather

than money, is what determines this negative figure. You have got y0 dollars as a result of

the sale of stock. At some point, you will need to request that the brokerage purchase back

the same quantity of stock that you first requested they sell and add it back to the asset pool

they are holding for their clients. On the day you return to the brokerage, you ask your

broker to purchase the stock back for y1 dollars, the going rate at the time. if y1 < y0, then

this deal has resulted in a profit for you; otherwise, a loss. The return and rate of return on

this transaction is given by

R =
−y1

−y0
=

y1

y0

and

r =
(−y1)− (−y0)

−y0
=

y1 − y0

y0
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respectively. Since short selling is so dangerous, many brokerage houses do not permit it.

Still, it may be lucrative.

Now let’s think about building a portfolio with n assets. We would want to provide an

initial budget of y0 dollars to these assets. The amount that we assign to asset i is y0i =w0y0

for i = 1,2,3, ...,n, where wi is a weighting factor for asset i. We allow the weights to

have negative values; this indicates that there is a shortage of the asset in our portfolio. To

maintain the financial constraints we require that the weights sum to 1.

n

∑
i=1

wi = 1

.

the sum of the investments =
n

∑
i=1

wiy0 = y0

n

∑
i=1

wi = y0

Notice that When we short a stock, we gain its market value right away, and we may use

that money to buy other assets or to reinvest it elsewhere. This allows us to free up more

cash for the acquisition of other stocks. If Ri denotes the return on asset i, then the total

receipts from our portfolio is

y1 =
n

∑
i=1

Riwiy0 = y0

n

∑
i=1

Riwi

, and so the portfolio’s overall return is

Ri =
n

∑
i=1

Riwi

. In addition, we have that the rate of return from asset i is ri = Ri − 1, i = 1,2,3, ...,n.

Hence rate of return on the portfolio is

r = R−1 =

(
n

∑
i=1

Riwi

)
−

(
n

∑
i=1

wi

)
=

n

∑
i=1

(Ri −1)wi =
n

∑
i=1

riwi

,
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3.2.2 The Basics of Markowitz Mean-Variance Portfolio Theory

The Markowitz mean-variance portfolio theory models the rate of return on assets as a ran-

dom variable. Selecting the portfolio weighting components as effectively as feasible is the

next stage. Markowitz states that the optimal weight combination for a portfolio generates

an adequate baseline expected rate of return with little volatility. In this case, the volatility

of an item is substituted by the variation in its rate of return.

For each i = 1,2, ...,n, let ri be the random variable corresponding to the rate of return for

asset i. Then, define the random vector

z =


r1

r2
...

rn


Set λi =E(ri), m=(λ1,λ2, ...,λn)

T , and cov(z)=∑. If w=(w1,w2, ...,wn)
T is a collection

of weights connected to a portfolio, then the rate of return of this portfolio r = ∑
n
i=1 riwi, is

another arbitrary variable that has a mean mT w and variance mT
∑w. If λb represents the

appropriate baseline anticipated rate of return, then any portfolio that solves the following

quadratic program qualifies as an optimum portfolio according to Markowitz theory:

M Minimize 1
2wT Σw

Subject to mT w ≥ λb, and eT w = 1,

In this case, every element of e is the number 1, meaning that e always represents the vector

of ones. The quadratic program’s KKT criteria are as follows:

0 = Σw−um− ve

λb ≤ mT w, eT w = 1 0 ≤ u,

uT (mT w−λb) = 0

For some u,v ∈ R. We may determine that w is a solution to M if (w,u,v) is any triple that

satisfies the KKT criteria since the covariance matrix is positive definite and symmetric.
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It’s rather simple to demonstrate that if M is possible, then there must always be a solution

to M, meaning that a KKT triple may be constructed for M.

3.3 Assumptions

Like every model, mean-variance analysis has assumptions that must be understood to be

used successfully. First of all, a single-period investment model serves as the foundation for

mean-variance analysis. The investor divides his money into several asset classes at the start

of the term, giving each item a nonnegative weight. Every investment produces a different

rate of return at different times over the term, resulting in a weighted average of returns

at the end that affects the portfolio’s value. An investor must choose asset weights while

taking into account some linear limitations, one of which is that the weights must add up to

one. According to economic theory, humans maximize the projected value of a developing

concave utility function of consumption while making decisions in the face of uncertainty.

Von Neumann and Morgenstern’s game theory research serves as the foundation for this

theory. In a one-period model, consumption is end-of-period wealth. Generally speaking,

selecting portfolio weights to maximize the predicted utility of ending period wealth is a

challenging stochastic nonlinear programming issue.

In brief, assumptions:

1. Increasing the projected return on the total amount of money is the aim of investing.

2. It is believed that each investor has the same time horizon for investments.

3. Every investor has a low-risk tolerance, meaning they will only accept greater risk if the

expected return is higher.

4. The projected return and risk are the main factors that investors consider when making

investments.

5. Every market is completely efficient (i.e., there are no transaction costs or taxes).

It is assumed that the utility function is concave and rising. In terms of the approximation

utility function, this translates into expected utility expanding in expected return (more is
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better than less) and falling in variance (less risk is better). As a result, the investor should

consider only those potential portfolios that minimize variance for a given level of expected

return or maximize predicted return for a given level of variation. These are the portfolios

that comprise the mean-variance efficient set.

3.4 Optimal Portfolio selection Model

Considering that N assets in the portfolio have returns Ri i = 1,2,3, ...,N

Let,

Rp = Portfolio return

Ri = Asset return i

wi = The component asset’s weight i (that is, the asset’s share i in the portfolio)

σi = The asset’s standard deviation i

Portfolio return:

Rp = ∑i wi ·E(Ri)

Portfolio return variance:

between the returns on assets i and j, where ρi j is the correlation coefficient.
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Markowitz demonstrated that the correlation (covariance) between the asset returns and

their weights, as well as the standard deviations of those returns, determine the risk of an

asset portfolio.

The link between the expected return from a portfolio and its volatility, or riskiness, is

described by the efficient frontier. On a risk graph, it can be shown as a curve versus the

expected return of a portfolio. The efficient frontier indicates the lowest amount of risk

required to get a particular projected rate of return or the best return that can be anticipated

for a given level of risk. The idea of portfolio design and valuation heavily relies on the

efficient frontier. One way to show the advantages of variety is through the idea of an

efficient frontier. An undiversified portfolio can be moved closer to the efficient frontier

by diversifying. Therefore, diversification can increase returns without increasing risk or

decrease risk without decreasing expected returns.

The CAL illustrates how the risk of the portfolio can be further decreased in Fig. 1 if the

investor has access to investments that don’t carry risk. The (fictitious) asset that pays a

risk-free rate is the risk-free asset. Short-term government securities, like US Treasury

bills, are often utilized as risk-free assets due to their extremely low default risk and fixed

rate of interest. Since the risk-free asset’s variance is zero, it is by definition risk-free and

uncorrelated with any other asset. It also has zero return variance.
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In the portfolio theory application, the following two quantities must be computed using

the appropriate units of measurement:

1. Historical Values: These are the absolute or relative source data points.

2. Expected Returns: The expected return on investment for the period under review,

which has to be specified and will be reimbursed in units (absolute or relative) based on

past performance.

The units used within the historical values must or will be consistent with the expected

return values that are evaluated or supplied.

“We need to have processes in place for determining suitable µi and ρi j to apply the E-V

rule to the selection securities. I think these processes ought to integrate the assessment

of practical knowledge with statistical methodologies. Using observed data from a certain

period in the past is one recommendation for the tentative µi and ρi j. I think there are

better methods out there that take into account more information. Security analysis has to

be rewritten in a ”probabilistic” way, in my opinion.

3.5 Later Developments

An essential component of the present theory of asset allocation is Markowitz’s selection

model. Many models of portfolio selection have been created since Markowitz’s model

was first introduced, to improve and complete portfolio theory in multiple ways. Huang

[21] and Markowitz [36] are two researchers who have constructed models to minimize

semivariance in various instances. Other researchers, including Konno and Suzuki [4], Liu,

Wang, and Qiu [33], and Pornchai, Krushnan, Shatid, and Arun [10], have included skew-

ness in their analysis of portfolio selection.

The prevalent presumptions are that investors possess sufficient historical data and that his-

torical data can accurately forecast the state of asset markets in the future. Since this isn’t

always the case, real-world issues come up. For instance, there is no historical data avail-

able for newly listed equities on the stock exchange. Investors found that using random,

fuzzy, and random fuzzy optimization models helped them deal with uncertainty. Several
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studies have demonstrated that mean-variance efficient portfolios that rely on estimations

are extremely vulnerable to changes in these estimates. Jobson, Korkie, and Ratti [22] as

well as Jobson and Korkie [23] go into length about these issues and recommend using

shrinkage estimators.

Certain authors Carlsson, Fuller, and Majlender [9], Leon, Liern, and Vercher [32], and

Vercher, Bermudez, and Segura [52] replace the unpredictable returns of the securities

with fuzzy numbers. Possibilistic distributions were employed by Tanaka and Guo [49]

and Tanaka, Guo, and Tı̀urksen [50] to model return uncertainty. Rigid targets for re-

turn rate, risk, and liquidity based on projected intervals were proposed by Arenas-Parra,

Bilbao-Terol, and Rodriguez-Ura [46]. Feiring, Wong, Poon, and Chan [15], as well as

Konno, include a measure of downside risk. An approximation to the lower semi-third in-

stant is used by Shirakawa and Yamazaki [28] in their Mean-Absolute Deviation-Skewness

portfolio model. As an alternative to the mean-variance (MV) model, Konno and Yamazaki

developed the mean absolute deviation (MAD) model, arguing that it reduces computation

time, preserves all the good aspects of the mean-variance model, and does not require the

covariance matrix.

Frost and Savarino [16] address the estimate risk issue by demonstrating that limiting port-

folio weights minimizes estimation error by limiting the action space during the optimiza-

tion. A resampling technique for estimating error is proposed by Jorion [24]. To account for

parameter uncertainty and maintain the choice simplicity of the efficient frontier, Michaud

[38] proposes a sampling-based method for estimating a resampled efficient frontier. Pol-

son and Tew [45] make the case that posterior predictive moments should be used in place

of point estimates for the sample model’s mean and variance.

Britten-Jones [7] suggests explicitly setting relevant prior densities on the portfolio weights

using a Bayesian technique. As per the findings of Chopra and Ziemba’s study [35], er-

rors in means are almost ten times more significant than errors in variances, and errors in

variances are nearly twice as important as errors in covariances. It was demonstrated by

Best and Grauer [3] that the amount of projected returns has a significant impact on opti-

mum portfolios. Jorion [25] uses a shrinkage method, but Treynor and Black [51] support

combining investors’ perspectives with past data. When a risk-averse Bayesian investor
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allocates their portfolio between stocks and cash, Kandel and Stambaugh [26] look at the

predictability of stock returns. It is emphasized by Zellner and Chetty [53], Klein and

Bawa [27], and Brown [8] to use a predictive probability model. Pı́astor and Stambaugh

[41] investigate the effects of different pricing models on ideal portfolios, reevaluating as-

sumptions in light of example data. Asset pricing models are suggested for use in providing

useful prior distributions for future returns by Pastor [42] and Black and Litterman [5].

Bollerslev et al. are concentrating their research on conditional covariances and correla-

tions. [6] or Engle [13] as a way to describe time fluctuations in the conditional depen-

dence of asset returns. Goetzmann, Li, and Rouwenhorst [18] discovered that correlations

between equities returns fluctuate significantly over time and peak during times when fi-

nancial markets are strongly interconnected. Their findings were based on data spanning

the previous 150 years. The idea that there is a permanent link between worldwide stock

markets was disproved by Longin and Solnik [34], who examined changes in the correla-

tion structure of global equity markets.

Moreover, Ang and Chen [2] confirmed connections between stock returns and a US market

aggregate market index. Some people associate the economic cycle stage with variations

in stock return correlations. Time-varying correlations are contingent upon the state of

the economy and tend to be stronger during recessions, as Ledoit, Santa-Clara, and Wolf

[31] and Erb, Harvey, and Viskanta [14] have shown. Similarly, Moskowitz [39] connects

NBER recessions to temporal variation of volatilities and covariances.

3.6 Konno Yamazaki, 1991

3.6.1 Introduction

Using mean absolute deviation (MAD) as a risk indicator, Konno and Yamazaki (1991)

created a new model to overcome the limitations of Markowitz’s mean-variance model.

The computational complexity of solving a large-scale quadratic problem with a dense co-

variance matrix is one of the main causes of the problems. They claim that to determine a

link between the rate of return and assets and market portfolio, equilibrium models need to
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apply some unreasonable assumptions. However, according to data from the Tokyo Stock

Exchange, this link is quite unstable, therefore using the CAPM data is best done as a first-

order approximation.

Most of Markowitz’s model’s shortcomings were addressed by Konno and Yamazaki while

maintaining its advantages over equilibrium models by using L1-mean absolute deviation

as a risk indicator instead of variance. Here are a few problems that are rarely fixed in

real-world situations:

Computational burden: Taking up complicated, large-scale quadratic problems can be

difficult.

Perception of investors: Reliability of the standard deviation as a risk indicator was ques-

tioned by a sizable segment of investors.

Transaction fees and the cut-off effect: This suggests that because he will have to pay

the transaction costs, the investor who makes little purchases in a range of equities would

be upset. Additionally, Since stocks cannot be bought in fractions, the investor must round

down to whole numbers.

3.6.2 Model

First, they presented the L1 risk function.

w(x) = E

[
|

n

∑
j=1

R jx j −E

[
n

∑
j=1

R jx j

]
|

]
Where,

R j = The rate of return on asset S j represented by a random variable

x j = Amount invested in S j

Mo = Total amount of funds

E[.] = the random variable’s expected value in the bracket

They continue by stating and demonstrating the subsequent theorem.:

If (R1, . . . . . . ,Rn) are multivariate normally distributed , then
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w(x) =

√
2
π

σ(x)

Where σ(x) = The standard deviation They demonstrated that in the case of multivariate

regularly distributed (R1–Rn), these two measures (w(x)andRi) are identical.

Thus, the Model assumes the following form:

Min w(x)E

[
|

n

∑
j=1

R jx j −E

[
n

∑
j=1

R jx j

]
|

]

ST


∑

n
j=1 E

[
R j
]

x j ≥ ρM0,

∑
n
j=1 x j = M0,

0 ≤ x j ≤ u j, j = 1,2,3, ...,n.

(3.6.1)

Konno and Yamazaki assumed that the average of the data might be used to estimate the

anticipated value of the random variable.

Therefore,

r j = E
[
R j
]
=

T

∑
t=1

r jt/T

Now,

E

[
|

n

∑
j=1

R jx j −E

[
n

∑
j=1

R jx j

]
|

]
=

1
T

T

∑
t=1

|
n

∑
j=1

(r jt − r j)x j|

Let

a jt = r jt − r j, j = 1,2,3, ...,n; t = 1,2,3, ...,T.

Model in (3.6.1) can be stated as,

Min ∑
T
t=1 |∑n

j=1 a jtx j|/T
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ST


∑

n
j=1 r jx j ≥ ρM0,

∑
n
j=1 x j = M0,

0 ≤ x j ≤ u j, j = 1,2,3, ...,n.

This corresponds to the linear program that follows:

Min ∑
T
t=1 yt/T

ST



yt +∑
n
j=1 a jtx j ≥ 0, t = 1,2,3, ...,T,

yt −∑
n
j=1 a jtx j ≥ 0, t = 1,2,3, ...,T,

∑
n
j=1 r jx j ≥ ρM0,

∑
n
j=1 x j = M0,

0 ≤ x j ≤ u j, j = 1,2,3, ...,n

The following are some of Konno-Yamazaki’s benefits over Markowitz’s model:

1. There is no need to figure out the covariance matrix.

2. Compared to completing a quadratic program, tackling a linear program is considerably

simpler.

3. A smaller solution size is ideal.

4. T can be used as a control variable to limit the portfolio’s total number of assets.

3.7 Black and Litterman, 1992

3.7.1 Introduction

The Black-Litterman asset allocation model was created by Fischer Black and Robert Lit-

terman. It is a method for creating portfolios that tackle the problems of highly concen-
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trated portfolios, input sensitivity, and optimizing estimate error. Their methodology uses a

Bayesian strategy to construct a new, mixed estimate of expected returns by combining the

market equilibrium vector of anticipated returns (the prior distribution) with the investor’s

subjective beliefs about the expected returns of one or more assets.

The Black-Litterman asset allocation model was first introduced by Black and Litterman in

1990, and it was further refined by Black and Litterman in 1991 and 1992. The Black Lit-

terman model combines the universal hedge ratio / Black’s global CAPM (Black, 1989a,

1989b), mean-variance optimization (Markowitz, 1952), mixed estimation (Theil, 1971,

1978), and reverse optimization (Sharpe, 1974). The process integrates recent and histor-

ical data to provide the updated expected return distribution. If an investor has any sub-

jective judgments, the weights on individual assets deviate from the weights in the market

equilibrium; if not, the weights are established by the facts in the market equilibrium.

Investor opinions and market equilibrium returns are the main inputs to the Black and Lit-

terman model. Investor views are included in this framework to assist investors in managing

the size of tilts brought about by views.

3.7.2 Market Equilibrium Returns

The Black and Litterman model is based on the capital asset pricing model (CAPM) or

market equilibrium weights. The CAPM is created by forming the efficient frontier of the

market portfolios and the capital market line (CML). No other combination of risky and

non-risky assets can produce greater returns at a given level of risk since the CML is tan-

gent to the efficient frontier at the market portfolio.

CAMP;

E(ri) = r j +
σi

σm
(rm − r j)

E(ri) = r j +βi(rm − r j)

Where,

E(ri) = Expectedreturnonasseti
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r j = Risk f reeassetreturn

rm = Returnonmarket port f olio

σi = Standarddeviationo f returnsonasseti

σm = Standarddeviationo f returnsonmarket port f olio

βi =
σi
σm

CAPM is used in reverse by the model. It is based on the assumption that mean-variance

investors hold the market portfolio and uses optimization to back out the optimal predicted

returns. Market equilibrium returns are defined by them as:

π = v∑ω

Where,

N = Quantity of assets

π = Implied access return vector (N, 1)

∑ = Returns’ covariance matrix (N, N)

ω = Weights of the assets based on market capitalization vector (N, 1)

v = Coefficient of risk aversion

v = rm−r j
σ2

m

3.7.3 Black-Litterman equation

The Black-Litterman formula integrates investor perspectives and equilibrium returns into

a single formula to calculate predicted returns, which are then utilized to calculate the ideal

portfolio weights.

E [R] =
[(

τ ∑
)−1

+P
′
Ω

−1P
]−1 [(

τ ∑
)−1

∏+P
′
Ω

−1Q
]−1

Where,

E [R] = Vector of aggregated outcomes (N, 1)

τ = Scalar representing the CAPM prior’s uncertainty

∑ = Equilibrium access returns’ covariance matrix (N, N)

P = Investor viewpoint matrix (N, 1)
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Ω = View error terms’ diagonal covariance matrix (K, N)

∏ = Equilibrium access return vector (N, 1)

Q = Vector of investor view (K, 1)

If the investor is unrestricted, we calculate the ideal portfolio weights using the Black-

Litterman formula by,

w∗ =
(
v∑
)−1

λ

Where λ is the vector derived from above equation

Maxw w
′
λ − vw

′
∑w/2

Generally speaking, the Black-Litterman method lets users realize the benefits of the

Markowitz paradigm by overcoming the mean-variance optimization’s most commonly

cited shortcomings, which include highly concentrated portfolios, input sensitivity, and

estimate error maximization.
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Chapter 4
Portfolio Optimization with Clustering Algorithms

4.1 Introduction

4.1.1 Background

Across the world, both people and organizations have embraced the concept of financial

investing. These investments support a variety of goals, including financial institutions

managing investor assets. Because of this, many participants in this market have unique

needs, objectives, and strategies regarding their financial commitments. Investing strate-

gies range from simple methods to complex algorithms. All investors, however, have the

same objective in mind: to strike a balance between high returns and low risk. However,

assembling such a portfolio is a difficult task.

Data analysis is the first step in creating an investing plan. Financial data must usually be

processed and transformed into more digestible formats that are suitable for study. This

data is frequently obtained from daily activities. After that, the information has to be ex-

amined using one or more approaches while taking into account different aspects. Risk

is one of these; whilst some participants show a greater willingness to take risks, others

adopt a more cautious approach. The goal is still to strike the ideal balance between risk

and reward. There are several approaches to assessing and controlling risk. When it comes

to portfolio optimization, diversity is a popular and well-respected strategy. By using data

that is vulnerable to risk from a variety of sources, diversified portfolios help to reduce risk

and decrease portfolio susceptibility. By incorporating risky data from several sources into

the portfolio, diversification aims to lower portfolio volatility.

In theory, financial assets such as bonds, futures, and stocks can be subjected to a cluster

analysis to create a diversified portfolio. Previous research indicates that cluster analysis, a

method used in many other fields, has potential in financial situations. This method divides

unorganized data into distinct components known as clusters. Essentially, cluster analysis

aims to minimize the difference and maximize the distance between separate groups or dis-
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tance, between stocks inside a cluster. Finding correlations in the data is its goal; the most

related datasets are grouped into clusters. Investment plans can then be developed based

on these clusters. We will compare and examine several cluster analysis techniques to find

a reliable strategy. Using datasets from Nordea, the evaluation of cluster analysis will be

carried out, evaluating the investment plan within a theoretical framework.

4.2 Previous Research

To identify patterns in data, cluster analysis is applied in many fields. However, few cluster

studies have been conducted using stock indexes or financial data in general.

A study that has been written about the topic looks at the best way to measure the variation

in stocks. The study uses a self-composed distance metric for cluster analysis to lessen

the drawbacks associated with other well-known techniques. One such is the correlation

approach, which sometimes varies during difficult times financially and may yield inaccu-

rate findings. The study concludes that while diversity is beneficial, there isn’t a single,

well-defined method for creating and managing a diverse portfolio.

Another research presents cluster analysis as a novel method for resolving issues with es-

timation errors in stock-based portfolios. This study compares the estimation errors using

cluster analysis with a resampling approach, which was used more frequently in the past.

The results show that a portfolio’s resilience and performance may be enhanced by using

cluster analysis. Additionally, it highlights the paucity of research on the topic. Moreover,

certain inquiries concerning the application and interpretation of the cluster analysis tech-

nique remain unresolved.

One paper discusses cluster analysis using a data set that is comparable to the one used

in this thesis. According to the study’s conclusion, investing methods developed from the

cluster analysis of stock data might result in both profit and loss.

As is evident, research on cluster analysis with stock data sets has been conducted. Even

though the prior research did not employ the same approach as this thesis, it does indicate

that further investigation into the cluster analysis method is warranted.
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4.3 Mathematical theory

Since mathematical models may forecast future financial market outcomes based on past

performance, they are frequently the foundation of investment strategies. Decisions made

by the mathematical model are based on some elements that are beyond the scope of hu-

man analysis. In addition, it is simple to make incremental modifications to a mathematical

model as a result of unforeseen market developments. Since not all elements can be an-

ticipated and accounted for in a mathematical model, it is not always possible to predict

the direction of the market. Even with mathematical models, human intervention is still

necessary to adjust the model for unforeseen events.

Many mathematical models are available to generate investing strategies. Each approach

has unique benefits and drawbacks. For instance, certain techniques work well for fore-

casting an investment plan in a particular industry, while others perform better for handling

anomalies.

This thesis focuses on using cluster analysis, a mathematical technique, to create an in-

vesting strategy. The benefits of diversifying portfolios make this approach popular. There

are several approaches available for performing cluster analysis, each with its own set of

benefits. Some of the criteria that affected the approaches selected for this thesis were the

type of data, the purpose of the study, and the definition of the distances between the stock

returns.

4.3.1 Cluster analysis

One method for organizing observations into clusters is cluster analysis. For the selected

features, the resulting clusters are homogenous. Based on the selected criteria, every clus-

ter will differ from the others. The characteristics chosen differ depending on the data and

the cluster analysis’s objective. Cluster analysis is a widely used technique in genetics,

marketing, finance, and mapping of disease categories, such as breast cancer kinds.
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In addition to the selection of features, a unique set of methodologies has developed since

cluster analysis may be applied in a multitude of domains. Hierarchical and non-hierarchical

clustering are the two basic techniques used in cluster analyses. Each of the two methods

has advantages that vary based on the type of data and the goal of the grouping.

Hierarchical clustering

One or more data point smaller clusters can be combined into bigger clusters or divided

into smaller clusters by using hierarchical clustering. Agglomerative clustering refers to

the more typical practice of combining smaller clusters into bigger ones. A tree, or den-

drogram, is typically used to illustrate the result of hierarchical clustering (see Figure 4.1).

Data points 1 and 4 comprise the lowest connected nodes (shown in Figure 4.1), which are

made up of the most related data points. As one navigates up the tree, one can see that the

data points are connected at higher altitudes. Depending on the type of data being utilized,

several linking techniques are available for carrying out hierarchical clustering. Because it

doesn’t require a set number of clusters, hierarchical clustering may be used for a variety

of issues.

Non-hierarchical clustering

On the other hand, non-hierarchical clustering instantly divides the data into a few differ-

ent groups. K-means is the most widely used algorithm in non-hierarchical clustering. The

K-means clustering technique may be used to create K-distinct clusters elegantly and with

simplicity. To do K-means clustering, the number of clusters, K, has to be chosen before-

hand. The fact that figuring out how many clusters to use might occasionally be difficult is

one of the primary issues with the K-means clustering technique. Another drawback of this

approach is that, unlike the hierarchical technique, it is not feasible to show the outcome in

a figure.

4.3.2 Choice of main method

Hierarchical clustering is the main technique of choice in this thesis. Since the focus of this

thesis is stock index data, hierarchical clustering is a better fit than non-hierarchical since

the relationship between the stock indices has never been studied before. Furthermore, it
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Figure 4.1: Example of a dendrogram

is challenging to estimate the number of clusters ahead of time, which is required for the

non-hierarchical technique.

4.3.3 Methods for performing hierarchical clustering

Performing a hierarchical cluster analysis may be done using various connection techniques

and distance metrics. To arrive at a trustworthy result, this thesis looks at two distance met-

rics and three distinct connection techniques. The centroid method, the average linkage

method, and Ward’s approach are the recommended linking techniques. The approaches

have been selected based on their widespread usage and numerous benefits, which raise the

likelihood of obtaining a dependable outcome. The correlation measure and the Euclidean

distance measure are the distance measurements that are employed. Since the Euclidean

distance metric is widely used and applicable to all connection techniques, It was chosen.

In addition, the Correlation measure will be utilized to investigate the differences between

the Euclidean and Correlation distances. The Correlation measure can only be matched
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with the Average approach among the three connecting strategies that were chosen. Below,

we’ll go into more depth about the characteristics of the linking techniques and measure-

ments.

Linkage methods

Ward

A hierarchical linking approach is Ward’s method. By combining the sum of squares and

determining the amount that the within-cluster sum of squares rises, It establishes the sep-

aration between two stocks, clusters, or observations.

dward(A,B) =

√
2nAnB

nA +nB
||mA −mB|| (4.3.1)

Equation (4.3.1) is the equation for the sum of squares to rise, it stands for the expense

of combining clusters A and B. The number of data points in the cluster is denoted by n j,

while the centroid of cluster j is represented by m j. The ∥∥ is a representation of the Eu-

clidean distance, which is detailed below. Since every point is a separate cluster, the total

of squares begins at zero and grows as the clusters combine. The increase is intended to

be as little as feasible by employing Ward’s technique. Ward’s approach will combine the

cluster with the fewest data points if the merging costs of the two clusters are the same.

The method’s greed and limitations stem from prior grouping decisions. Once a data point

is allocated to a cluster, it cannot move clusters.

Only the Euclidean distance, one of the techniques for determining the separation of stocks,

may be used in conjunction with Ward’s approach. This is due to the algorithm’s require-

ment for the Euclidean computation during the initial setup, which occurs when each data

point is a separate cluster.

Centroid

The distance between each cluster’s centroids is measured using the centroid technique.

The cluster’s centroid, or average element, is its most representative location. The average

value of the data points inside the cluster determines the value. The centroid, which is a

cluster’s center of mass, will serve as a benchmark for measuring the separation between

clusters.
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dcentroid(A,B) = ∥mA −mB∥,where m j =
1
n j

ni

∑
j=1

m ji, i = 1, ...,n (4.3.2)

m j = centroid of cluster j. Further i portrays the cluster’s total amount of data points.

One often utilized technique, particularly in genomics, is the centroid approach. But there

is a drawback to it. When two clusters are gathered at a height less than the height of one

cluster that is already visible in the dendrogram, an inversion takes place. The dendrogram

may be more challenging to see and comprehend as a result of the inversion.

Average linkage

The Average Linkage Method calculates the average distance between each pair of clusters

to get the exact distance between them. To calculate average linkage, the distances between

each data point in one cluster and each data point in the other cluster are compared. The

findings are then averaged.

daverage(A,B) =
1

nAnB
∑

i∈A, j∈B
d ji (4.3.3)

where ni is the cluster’s total amount of data points.

Equation (4.3.3) provides the average linkage calculation formula. The distance between

clusters A and B is the average distance between each data point in a cluster.

Unlike the other approaches, the Average linkage method may make use of measures such

as the Correlation measure in addition to the Euclidean distance metric.

Distance measures

Euclidean

One popular technique for determining the separation between data to find commonalities

is the Euclidean distance metric. The method, which calculates the shortest path between

observations using a straight line distance, is based on the Pythagorean theorem and has

its roots in ancient geometry. By taking the square root of the total squared differences

between two clusters, one may determine the Euclidean distance measure, p, and q, in the

ith dimension.
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Euclidean distance =

√
n

∑
i=1

(pi −qi)2 (4.3.4)

Correlation For the Average linkage approach, the Correlation measure can be utilized as

a distance metric. The variance between data points is measured by the correlation matrix.

But in a technical sense, the Correlation matrix is not a metric. To do a cluster analysis

using the correlations, all that needs to be done is to translate the coefficients into distance

units. For cluster analysis, the correlation measure is a useful method when examining

stock-based data. It’s common for the stock prices of the other stocks in a cluster to drop

in response to a decline in the price of one of the stocks. This is an effective method for

building and refining a portfolio.

Matrix 4.1 illustrates the Correlation matrix, which contains comparisons between the eq-

uities. σ2 represents the variance of the stocks, and Xm indicates the stock m. The diagonal

components are all one. Additionally, each component offers the correlation between stock

m and stock n.

Matrix 4.1 Correlation matrix
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4.4 Method and Model

In our research work, we find out the optimal portfolio for minimizing the risk and maxi-

mizing the return using Microsoft Excel, Excel Solver, and matrix multiplication to com-

pute variance and covariance matrix using five stocks.

4.4.1 Data Collection

In this demonstration, we are going to use five years of monthly stock price data for five

companies such as:

1. McDonald’s Corporation (MCD)

2. The Coca-Cola Company (KO)

3. PepsiCo, Inc. (PEP)

4. Nestlé S.A. (NSRGY)

5. Yum! Brands, Inc. (YUM)

For sixty months from 01-01-2015 to 01-01-2020. To find out the optimal portfolio for

minimizing the risk and maximizing the return using Microsoft Excel, Excel Solver, and

matrix multiplication to compute variance and covariance matrix using five stocks.

Firstly we collect data from Financeyahoo and then use Microsoft Excel to set the close

price of five stocks for sixty months.

Table 4.1 shows the monthly price of five stocks (MCD), (KO), (PEP), (NSRGY), and

(YUM)

Firstly we calculate the McDonald’s Corporation (MCD) return using the formula of return.

R =
y1

y0

The asset’s rate of return is determined by

r =
y1 − y0

y0
=

(
y1

y0
−1
)
×100
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. the same formula is used for the remaining companies such as The Coca-Cola Company

(KO), PepsiCo, Inc. (PEP), Nestlé S.A. (NSRGY), and Yum! Brands, Inc. (YUM). Table

4.2 shows the return rate of the monthly price of five stocks.

Table 4.3 shows the calculations of Average monthly return, Monthly return, and Annual

return.
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Table 4.1: Monthly Prices of Five Stocks
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Table 4.2: Rate of Return of Five Stocks
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Table 4.3: Statistical Measures of Five Stocks
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Table 4.4: Excess Return of Five Stocks
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Table 4.5: Variance-Covariance Matrix

Risk-Free Rate
To estimate investment returns and figure out the best way to distribute assets within a port-

folio, the risk-free rate is a critical factor.

Risk-Free Rate = 3.88

58



Table 4.6: Annual Returns of Five Stocks

In conclusion, if we agree with this result, to optimize our portfolio, we only invest 70% of

our money in MCD and the remaining 30% in YUM. For the rest of the stocks, we do not

invest.
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Chapter 5
Conclusion

Since there are several approaches to doing the analysis and interpreting the findings, the

cluster analysis method is unable to yield a single, accurate response. To determine if

cluster analysis is a useful tool for developing investing strategies, more investigation is

required.

Due to the ongoing changes in the financial market, this investment plan is already out of

date and must be modified frequently. This investment plan should be approached cau-

tiously as it could not be validated, as just one method produced an analytical result. Even

more dubious was the outcome of the non-scientific method used to determine the number

of clusters. The status of the economy has an impact on the investment strategy, which

might be challenging to account for when doing the calculations. Reliability increases with

the amount of data used. A cluster analysis-based investing approach is likely to be suc-

cessful and yield a modest but good return if further research is done in this field.
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