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Abstract

Topological Description of Mobius Strip via Degree Based

Indices

By

Maira Riaz

Scientists study tiny building blocks called molecules. These molecules have shapes and

patterns, and scientists use something called molecular graph theory to understand them.

They also use special math formulas called topological indices. In our project we looked

at a special shape called Hexagonal Mobius strip. It’s like a twisted cylinder with loop on

one side, and it can be big or small. It comes in variety of sizes and shapes and while some

Mobius strip are simple to picture in regular space, few are more difficult. We wanted

to know two things: how molecules act (heat of formation/entropy) and the structure of

molecules (topological indices and co indices). To figure this out, we used a method called

Curve Fitting on the Hexagonal Mobius strip.
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Chapter 1
Introduction

The model of graph theory announced by Swiss Mathematician leonhard Euler in 1736

by a famous example ”Seven Bridges of Königsberg problem,” is regarded as the origin

of graph theory. Euler wondered if you could walk around the city, crossing each bridge

only once. To crack this riddle, Euler turned it into a math concept, creating what we now

call a ”Graph”. That graph provided a straightforward representation of city’s layout and

bridges. Euler’s innovative approach in tackling this problem marked the birth of graph

theory, a branch of math that explores connections and relationships using diagrams. This

innovative idea starts a new field that,s useful in many different ways. Graphs are like pic-

tures that help us see how things are connected. We use them to understand relationships

and patterns in different fields like biochemistry, electrical engineering, computer science,

transportation and operation research. The Graph theory is like a special part of math that

studies graph and what they can tell us. It help us figure out the different shapes and patterns

in all kind of graphs. By using this, we can solve problems about network, relationships

ans systems that are linked together.

Chemical graph theory is the topology branch of mathematical chemistry which applies

graph theory to mathematical modelling of chemical phenomena. So, it’s like drawing a

map of molecules to see how the different parts are connected. The concept of chemi-

cal graph is a labelled graph whose vertices corresponding to the atoms of the compound

and edges corresponding to chemical bonds. This way, scientists can learn more about the

shape and qualities of chemicals. This helps in various things like designing new drugs or

understanding how different molecules behave. Chemical graph theory derived topological

indices can be used to model the geometric structure of chemical substances. Chemical

graph theory started when people started using a math idea called ”graph theory” in the

late 1800s. Mathematicians like Leonhard Euler and Arthur Cayley helped create this idea.

Graph theory became a helpful way to show the shapes of molecules in a formal and orga-

nized manner. With the rise of computational chemistry, using graph theory to understand

1



how molecules are put together and predict how they act became more advanced. Now,

scientists often use computer programs and special math techniques to study the structures

of molecules and how chemicals react with each other.

A structural physicochemical properties of a molecule or part of a molecule is known as

a molecular descriptor. They are important in studying how chemicals work and help in

study the relationship between structure and properties of chemical. There are two main

types of descriptors: topological indices and counting polynomials. Topological indices

give information about the atoms are connected in a molecule, and they have become very

popular in recent years. We can use these descriptors to studies to predict the properties of

chemicals without actually making them first.

This thesis arranged in the following way:

In Chapter 2, explained some simple ideas about graphs that are important for understand-

ing the thesis and also introduced the terms that will be used in the following chapters. This

helps to followalong better as we explore more complex concepts. So, it’s like setting the

stage for what comes next in the thesis.

In Chapter 3 focuses on exploring chemical graph theory. In this chapter, look into things

like degree based topological indices and co indices. We are also going to dive into entropy,

which is a concept related to these indices and co indices. Entropy helps use to figure out

how much disorder or randomness is in the molecule’s structure.

The Mobius strip is a mathematical object that seems like a loop but has a twist. We can

find it interesting because it’s great for explaining topology, a part of math dealing with

shapes and spaces. This strip is famous for showing how a tiny change can make super

exciting. It’s simple thing with surprising math behind it. It can make your brain think

differently about math. The Mobius strip also used in art and design. The conveyor belt’s

duration rises in a high valume facility by constructing it as a Mobius strip. Artists and

teachers like to use it to show ideas about infinity, symmetry and something called non-

orientability. Mobius strip helps to see and understand things in art and design in a really

intersting way. Now, think of a Mobius strip like a twisted ribbon with a loop on one side.

What’s cool is that it seems to have two sides, but it’s really just one continuous side. This

makes Mobius strip special in shape. The Mobius strip’s journey from its discovery in the

2



19th century to its current status as an iconic mathematical object highlights its significance

in both mathematical exploration and its cultural impact.

Chapter 4 focuses entirely on the most important finding. We investigate particular mea-

sures, like topological indices and co indices, for our special graph known as the Mobius

strip. Then we examine how much these measures can change, which we call entropy.

The main idea is connecting the topological indices to their entropies and likewise for co

indices and their entropies. Furthermore, we explore how these measures are linked to the

heat of formation usinga method called curve fitting. This method helps us to see how

different things are connected in a clear and straightforword way. In simple words, we are

figuring out special values for our graph and seeing how they relate to each other. We are

using these measures to making things easier to understand for everyone interested in our

research.

In Chapter 5, shared the final thoughts or wrap up everything. We talk about what we

learned. We share our final thoughts and sum up all the important things we measured. It’s

putting together the main ideas and making a conclusion about everything we discovered.

3



Chapter 2
Basic Concepts

2.1 Introduction:

This chapter is all about the key ideas in graph theory. These ideas are super important to

make a good base for the rest of study.

2.2 Basic Elements for Graph Theory:

In this part, we give an official explanation about graph and talk about the different words

we used to describe its parts.

Definition 2.2.1. Let G = (V,E) made up of a set of nodes, known as vertices (V ), and

lines, known as edges (E) that connect with pairs of vertices. The study of graph, which

are mathematical structure which represent relationship between objects pairwise is known

as graph theory.

Definition 2.2.2. The order of a graph is how many vertices it has, and the size of a graph

is how many edges that graph has.

Figure 2.1: Graph
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For the given example,the vertex set and the edge set are;

V (G) = {v1,v2,v3,v4,v5}

E(G) = {v1v4,v1v5,v2v4,v2v3,v3v5,v3v4,v4v5}

There are 5 vertices in total and there are 7 edges connecting them. So, we can say that the

size of graph is 5 (because there are 5 vertices) and the order of graph is 7 (because there

are 7 vertices).

Definition 2.2.3. The vertices in simple graphs are connected by single edge and there are

no loop or multiple edges between vertices.

Figure 2.2: Simple Graph

Definition 2.2.4. The vertices in multiple graphs are connected by multiple edges and there

can also be loops in graphs.

5



Figure 2.3: Multiple Graph

The 2.2, we can clearly see that there is no loop and every two vertex connected with

single edge, this make the graph simple. But in the other 2.3, the vertex v2 has a loop and

also vertex v1 and v3 connected with more then one vertex, this means the graph in 2.3 is

multiple graph.

Definition 2.2.5. A connected graph, every pair of vertices in a graph is connected if there

is a path connecting them.

Figure 2.4: Connected Graph

Definition 2.2.6. A disconnected graph, not every pair of vertices in the graph has a path

connecting them.

6



Figure 2.5: Disconnected Graph

In 2.4, each pair of vertices is connected by at least one path, this implying that the

vertices are interconnected. But in 2.5, a vertex u6 lacks connections to other vertices, it

indicates that there is no path or link between this vertex and any other vertices. That’s

mean 2.5 is disconnected graph.

Definition 2.2.7. A graph in which there is an edge connecting each pair of unique vertices

is said to be complete.

Figure 2.6: Complete Graph

Definition 2.2.8. A graph in which there is not an edge connecting each pair of unique

vertices is said to be incomplete.

Figure 2.7: Incomplete Graph

Fig 2.6, every vertex of graph connecting with each other with an edge. In fig 2.7, some

vertices are not connecting with each other.
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Definition 2.2.9. Every vertex in a regular graph connecting with same number of edges,

or every vertex has equal degree.

Figure 2.8: Regular Graph

Definition 2.2.10. Every vertex in a irregular graph connecting with different number of

edges, or every vertex has different degree.

Figure 2.9: Irregular Graph

Every vertex of graph of fig 2.8 have equal degree 3 which means that graph is 3 regular

graph. But in the graph of fig 2.9 degree of m1 = 2, degree of m2 = 3, degree of m3 = 2,

degree of m4 = 2 and degree of m5 = 1. We can clearly see that every vertex has different

degree which means its an irregular graph.

Definition 2.2.11. In a graph, a walk means to going from one vertex to another vertex by

following the edges. Length of the walk is the total number of edges which are covered in

a walk.

Definition 2.2.12. In a graph, a path is a walk in which all the vertices are distinct, which

means you can’t choose to follow the same vertex more than one.

Definition 2.2.13. A cycle is a closed path that starts and ends at the same vertex.

8



Figure 2.10: Cycle

Here i mention below walk, path and cycle from the graph in 2.10.

Walk (a1 −a4 −a5 −a1 −a2 −a3)

Path (a1 −a2 −a3 −a4 −a5), (a1 −a5 −a4 −a3)

Cycle (a1 −a2 −a3 −a4 −a5 −a1)

Definition 2.2.14. A cyclic graph is a unique type of graph which contains at least one

cycle.

Figure 2.11: Cyclic Graph

The graph in 2.11 is a cyclic graph because it has cycles in it. Some are listed below:

a2 −a3 −a4 −a5 −a2

a2 −a3 −a5 −a2

a3 −a4 −a5 −a3

9



Definition 2.2.15. Distance in a graph is all about to find out number of edges you have to

cross when taking the shortest path between two vertices.

Figure 2.12: Distance in Graph

The distance between u and x is d(u,x) = 2 because the shortest path between them is

u− v− x.

10



Chapter 3
Chemical Graph Theory

3.1 Introduction

In this chapter, we explore the structure of our graph which is Mobius strip and delve into

topics like topological indices and topological co indices. We discuss how these concepts

help us understand the unique properties and connections within the graph in a simple way.

3.2 Structure of Mobius Strip

An interesting mathematical object known as the Mobius strip was discovered in 1858 by

two German Mathematicians J. B. Listing and A. F. Mobius. Imagine you have a long,

flat ribbon. Now twist one side of the ribbon around by 180 degree and then connect the

both ends of the ribbon together. The hexagonal Mobius strip is a unique shape which is

resembling with a twisted ribbon who featuring six sides. The Mobius strip is a fascinating

math object that looks like a long, flat ribbon but with a twist in the middle. An authentic

substance Mobius strips are inflexible material that, when left to itself, take on a unique

form that is not dependent to the type of material. So, if you follow along its surface, you

go on both the inside and outside without any break. This is how a Mobius strip made [1].

Mobius strip used a lot in different technical fields and research.Even though they can look

different in shaps and sizes, most of them exist in regular three-dimensional space. They

are special because of their topology, which means they have endless nature. Mobius strip

often used to show students ideas about topology and geometry. Compared to a regular

cylindrical shape, a mobius strip has double the number of edges on its boundary, even

though both have the same avarage diameter. this makes the Mobius strip better because it

has a longer path.

The Mobius strip is a special shape that scientists use in different areas of science. The

Mobius strip exists in the real world as a physical object. It has been used as an imagery
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Figure 3.1: Mobius Strip

(a): HMn

(b): HM5

Figure 3.2: Chemical structure of Hexagonal Mobius Strip

tool to clarify ideas like of one-sided object and non-orientability. Another interesting

use is in electromagnetic resonators and filters. It acts like a special electromagnetic strip

that vibrates at half the frequencies of a regular electromagnetic cylinder. The Mobius

strip is unique shape that works well for certain electromagnetic uses [2]. In the world of

communication tech, there is something cool called Mobius strip resonators. They do not

resemble the typical devices employed for various frequency bands. Unlike regular devices

for different frequencies, these resonators help us make compact and powerfull oscillators

that can workin many frequency bands. This leads to smaller and better communication

12



gadgets in the end [3].

3.3 Chemical Graph Theory

In a chemical graph, vertices (atoms) and edges (bonds) show how atoms are in chemical

molecule put together. The edges tells us how atoms are linked by bonds, each vertex is

like a symbol an atom, It’s kind a map that helps us see the atoms and bonds in a chemical

molecule. The branch of mathematical chemistry which applies graph theory to mathemat-

ical modeling of chemical activities . Chemical graph theory, a part of chemistry, brings

together graph theory and chemistry [10, 11]. It’s like using a secret code to explore and

understand the complicated world of molecules and how they interact with each other.

3.4 Topological Indices

We can discover things about chemicals using a special number called a topological index,

which was Wiener’s discovery. A topological index is a molecular structure descriptor cal-

culated from a molecular graph of a chemical compound which characterizes its topology.

Various topological indices are categorized based on their degree, distance and spectrum.

This number helps us understand how a chemical structure is connects to its properties,

such as how it interact with living things, reacts with other stuff, and changes things like

boiling points. Topological indices in chemistry include processing information, unique-

ness determination, isomer generation and prediction of neuclear magnetic resonance spec-

tra. Topological indices are usually used for quantitative-structure property relationships

(QSPR) and quantitative structure action relationships (QSAR). They look at the structure

of the chemical and how atoms are linked without getting into details about the types of

atoms or their bonding. Understanding the biological effects of a chemical require an un-

derstanding of this simple method. It allows us to spot patterns and connections between

structure of chemicals and its function in living things. In simple words, How topological

indices help us uncover the mysteries of how a chemical affects o a living organisms by

paying attention to its structure and connection [4].

Topological indices have two types; 1. Degree Based Topological indices 2. Distance
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Based Topological indices. Here we talk about somee degree based topological indices

below in table 3.1.

Table 3.1: Degree Based Topological Indices

Topological Indices Functions
1st , 2nd and 3rd Redefine Zagreb index [5]

ReZG1(G) = ∑
st∈G

(
α(s)+α(t)
α(s)×α(t)

)
ReZG2(G) = ∑

st∈G

(
α(s)×α(t)
α(s)+α(t)

)
ReZG3(G) = ∑

st∈G
((α(s)+α(t))

× ((α(s)×α(t))

1st and 2nd K Banhatti index [6]

B1(G) = ∑
st∈G

(α(s)+α(t))

B2(G) = ∑
st∈G

(α(s)×α(t))

1st and 2nd Modified K Banhatti index [7]

MB1(G) = ∑
st∈G

1
α(s)+α(t)

MB2(G) = ∑
st∈G

1
α(s)×α(t)

1st and 2nd Hyper K Banhatti index [8]

HB1(G) = ∑
st∈G

(α(s)+α(t))2

HB2(G) = ∑
st∈G

(α(s)×α(t))2

sum connectivity index [8, 9]

SB(G) = ∑
st∈G

1√
α(s)+α(t)

14



3.5 Topological Co-indices

Topological co-indices are a way to study molecular shapes by considering both the math-

ematical representation of molecules and their physical properties. In simple words, topo-

logical co index is a mathematical formula that can be applied to any graph which models

some molecular structure. These co indices are computed for non-adjacent pair of vertices.

We can use these co indices to speed up our research. The calculation of these topolog-

ical co indices offers scientists to quickly identify particular characteristics of molecules

without having to spend a lot of time performing laborious experiments in the laboratories.

Topological co indices are like a quick track for scientists to learn how molecules act with-

out doing long experiments and help researchers quickly get insights into the properties and

behavior of molecules, making the study of chemistry easier and faster [12]. Here some

topological co indices which we determine, mention below in table 3.2.

3.6 Entropy

Entropy [23], an idea from scientist Shannon [24], helps us to understand how a system

gets really unpredictable when it can’t go back to where it began. Another researcher

Dehmer [25, 26], is looking into these entropies to understand and use them better. More

authore have also looked at the entropy of topological indices. In chemistry, information

entropy is now used in two modes. First one is, it is a structural descriptor for assessing

the complexity of chemical structures. second one is, informatiom entropy s usefull in this

regard for connecting structural and physico chemical features numerically distinguishing

isomers of organic molecules and classifying natural products and synthetic chemicals.

Adding to what we know in this field [27, 28, 29, 30]. The general form of entropy is

following,

E(G) = −
n

∑
k=1

(
α(a(s)ka(t)k)

T

)
log
(

φ(a(s)a(t))
T

)
= log(T )− 1

T

n

∑
k=1

Ikα(a(s)ka(t)k)logα(a(s)ka(t)k)
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Table 3.2: Degree Based Topological Indices

Topological co-Indices Functions
1st and 2nd Zagreb co-index [13, 14, 15,
16, 17]

M1(G) = ∑
st∈G

(α(s)+α(t))

M2(G) = ∑
st∈G

(α(s)×α(t))

Randic co-index [18, 19]

Rβ (HMn) = ∑
st∈HMn

(α(s)×α(t))β

β = (
−1
2
,−1,1,

1
2
)

Forgotten co-index [20]

F(G) = ∑
st∈G

(α(s)2 +α(t)2)

Hyper Zagreb co-index [21]

HM(G) = ∑
st∈G

(α(s)+α(t))2

1st and 2nd Multiple Zagreb co-index [22]

PM1(G) = ∏
st∈G

(α(s)+α(t))

PM2(G) = ∏
st∈G

(α(s)×α(t))

Where ”T = ∑
n
k=1 Ikα(a(s)ka(t)k)” is a molecular index and ”n” stands for the number of

sets of edges. ”Ik” representd the frequency, and ”α(st)” indicates the weight of an edge

connecting points.

In this chapter, we discuss topological indices and co indices. Moving forward to the next

chapter, we unveil the key findings and main results related to these indices.
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Chapter 4
Degree-Based Topological Description of

Hexagonal Mobius Strip

4.1 Introduction

This chapter focuses on unveiling our primary findings regarding topological indices, co

indices and the entropy associated with these measures. Additionally, we explore these

indices through curve fitting techniques. Here, we present the main results derives from

our exploration in these areas.

4.2 Essential Result for Topological Invariant

We’ll examine mathematical formulas related to the mentioned indices which are men-

tioned in Chapter 2.

Here’s edge-partitioning mention below for Hexagonal Mobius Strip.

Table 4.1: Edges calculating for HMn

[n] 3 4 5 6 ... n
Vertices 12 16 20 24 ... 4n

Table 4.2: Edges calculating for HMn

[n] 3 4 5 6 ... n
Edges 15 20 25 30 ... 5n

Table 4.3: Edge-Partitioning of HMn

Frequency degree of edges (α(s),α(t)
4n 3 (2,3)
n 4 (3,3)
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Theorem 4.2.1. The first, second and third Zagreb index for G = HMn, n ≥ 3 is given by

ReZG1(HMn) = 4n, ReZG2(HMn) = 6.3n & ReZG3(HMn) = 174n.

Proof:

By using Table 3.1 for ReZG1(HMn), ReZG2(HMn) and ReZG3(HMn) and Table 4.3, we

get

ReZG1(HMn) = ∑
st∈G

(
α(s)+α(t)
α(s)×α(t)

)
= 4n

(2+3)
(2×3)

+4n
(3+3)
(3×3)

ReZG1(HMn) = 4n

ReZG2(HMn) = ∑
st∈G

(
α(s)×α(t)
α(s)+α(t)

)
= 4n

(2×3)
(2+3)

+4n
(3×3)
(3+3)

ReZG2(HMn) = 6.3n.

ReZG3(HMn) = ∑
st∈G

((α(s)+α(t))× ((α(s)×α(t))

= 4n((2×3)× (2+3))+n((3×3)× (3+3))

ReZG3(HMn) = 174n.

Theorem 4.2.2. The first and second K Banhatti Index for G = HMn, n ≥ 3 is given by

B1(HMn) = 58n & B2(HMn) = 84n.

Proof:

Using Table 3.1 for B1(HMn) and B2(HMn) and Table 4.3, we obtain

B1(HMn) = ∑
st∈G

(α(s)+α(t))

= 4n((2+3)+(3+3))+n((3+4)+(3+4))

B1(HMn) = 58n.

B2(HMn) = ∑
st∈G

(α(s)×α(t))

= 4n((2×3)+(3×3))+n((3×4)+(3×4))

B2(HMn) = 84n.
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Theorem 4.2.3. The first and second Modified K Banhatti Index for G = HMn, n ≥ 3 is

given by MB1(HMn) =
67
154n & MB2(HMn) =

37
120n.

Proof:

With the help of Table 3.1 for MB1(HMn) and MB2(HMn) and Table 4.3, we achieve

MB1(HMn) = ∑
st∈G

(
1

α(s)+α(t)

)
= 4n

(
1

(2+3)+(3+3)

)
+n
(

1
(3+4)+(3+4)

)
MB1(HMn) =

67
154

n.

MB2(HMn) = ∑
st∈G

(
1

α(s)×α(t)

)
= 4n

(
1

(2×3)+(3×3)

)
+n
(

1
(3×4)+(3×4)

)
MB2(HMn) =

37
120

n.

Theorem 4.2.4. The first and second Hyper K Banhatti Index for G = HMn, n ≥ 3 is given

by HB1(HMn) = 342n & HB2(HMn) = 756n.

Proof:

Through the using of Table 3.1 for HB1(HMn) and HB2(HMn) and Table 4.3, we get

HB1(HMn) = ∑
st∈G

(α(s)+α(t))2

= 4n((2+3)+(3+3))2 +n((3+4)+(3+4))2

We have,

HB1(HMn) = 324n.

HB2(HMn) = ∑
st∈G

(α(s)×α(t))2

= 4n((2×3)+(3×3))2 +n((3×4)+(3×4))2

Hence,

HB2(HMn) = 756n.

Theorem 4.2.5. The first and second Hyper K Banhatti Index for G = HMn, n ≥ 3 is given
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by SB(HMn) = 1.0427n . Proof:

With a Table 3.1 for SB(HMn) and Table 4.3, we reach

SB(HMn) = ∑
st∈G

1

(α(s)+α(t))
1
2

= 4n

(
1

((2+3)+(3+3))
1
2

)
+n

(
1

((3+4)+(3+4)
1
2 )

)
SB(HMn) = 1.0427n.

Hence, I figured out some degree based topological indices for my graph Mobius strip.

Next, I’m going to graphical comparison of topological indices with their entropies in sec-

tion 4.3.1 and with heat of formation in section 4.3.2.

Lemma 4.2.6. Consider a connected graph called G with n vertices. For each vertex, ni

tells us how many edges are connected to it (which is its degree) and mi j tells how many

edges connecting with vertices with degrees i and j together [31].

E i j = {uv ∈ E(G)| φ̃(v) = i, φ̃(u) = j}

mi j = |E i j|=


ni(ni−1)

2 −mii, i = j

nin j −mi j, i < j

Now, let’s look at derivation of topological co indices for Hexagonal Mobius Strip.

We’ll use the information provided in Table 4.3 and the mentioned lemma.

For i = 2, j = 3: taking values of n2, n3 and m23 form 4.1 and 4.2.

m23 = n2n3 −m23

= 2n×2n−4n

m23 = 4n2 −4n
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For i = 3, j = 3: taking values of n3, n3 and m33 form 4.1 and 4.2.

m33 =
n3(n3 −1)

2
−m33

=
2n(2n−1)

2
−n

m33 = 2n2 −2n

Table 4.4: Edge-Partitioning of HMn

Frequency (α(s),α(t))
4n2 −4n (2,3)
2n2 −2n (3,3)

Theorem 4.2.7. The first and second Zagreb Co Index for G = HMn, n ≥ 3 is given by

M1(HMn) = 32n2 −32n & M2(HMn) = 42n2 −42n.

Proof:

By use of Table 3.2 for M1(HMn) and M2(HMn) and Table 4.4, we access

M1(HMn) = ∑
st∈G

(α(s)+α(t))

= (4n2 −4n)(2+3)+(2n2 −2n)(3+3)

M1(HMn) = 32n2 −32n.

M2(HMn) = ∑
st∈G

(α(s)×α(t))

= (4n2 −4n)(2×3)+(2n2 −2n)(3×3)

M2(HMn) = 42n2 −42n.

Theorem 4.2.8. The Hyper Zagreb Co Index for G = HMn, n ≥ 3 is given by

HM(HMn) = 172n2 −172n.

Proof:
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Via using Table 3.2 for HM(HMn) and Table 4.4, we obtain

HM(HMn) = ∑
st∈G

(α(s)+α(t))2

= (4n2 −4n)(2+3)2 +(2n2 −2n)(3+3)2

HM(HMn) = 172n2 −172n.

Theorem 4.2.9. The Forgotten Co Index for G = HMn, n ≥ 3 is given by

F(HMn) = 88n2 −88n.

Proof:

Table 3.2 for F(HMn) and Table 4.4 helps us to get

F(HMn) = ∑
st∈G

(α(s)2 +α(t)2)

= (4n2 −4n)(22 +32)+(2n2 −2n)(32 +32)

F(HMn) = 88n2 −88n.

Theorem 4.2.10. The first and second Multiple Zagreb Co Index for G = HMn, n ≥ 3 is

given by PM1(HMn) = 240n4 −480n3 +240n2, PM2(HMn) = 432n4 −864n3 +432n2.

Proof:

With the help of Table 3.2 for PM1(HMn) and PM2(HMn) and Table 4.4, we gain

PM1(HMn) = ∏
st∈G

(α(s)+α(t))

= (4n2 −4n)(2+3)× (2n2 −2n)(3+3)

PM1(HMn) = 240n4 −480n3 +240n2.

PM2(HMn) = ∏
st∈G

(α(s)×α(t))

= (4n2 −4n)(2×3)× (2n2 −2n)(3×3)

PM2(HMn) = 432n4 −864n3 +432n2.

Theorem 4.2.11. The Randic Co Index for G = HMn, n ≥ 3 is given by
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R−1
2
(HMn)= 2.2997n2−2.2997n, R−1(HMn)= 0.8889n2−0.8889n , R 1

2
(HMn)= 15.7980n2−

15.7980n & R1(HMn) = 42n2 −42n .

Proof:

By consulting Table 3.2 for R−1
2
(HMn), R−1(HMn), R 1

2
(HMn) and R1(HMn) and Table 4.4.

The general form of Randic co index,

Rβ (HMn) = ∑
st∈HMn

(α(s)×α(t))β ,whereβ = (
−1
2
,−1,1,

1
2
)

If β =
−1
2

then,

R−1
2
(HMn) = ∑

st∈G
(α(s)×α(t))

−1
2

= (4n2 −4n)(2×3)
−1
2 +(2n2 −2n)(3×3)

−1
2

R−1
2
(HMn) = 2.2997n2 −2.2997n.

If β =−1then,

R−1(HMn) = ∑
st∈G

(α(s)×α(t))−1

= (4n2 −4n)(2×3)−1 +(2n2 −2n)(3×3)−1

R−1(HMn) = 0.8889n2 −0.8889n.

If β =
1
2

then,

R 1
2
(HMn) = ∑

st∈G
(α(s)×α(t))

1
2

= (4n2 −4n)(2×3)
1
2 +(2n2 −2n)(3×3)

1
2

R 1
2
(HMn) = 15.7980n2 −15.7980n.

If β = 1 then,

R1(HMn) = ∑
st∈G

(α(s)×α(t))1

= (4n2 −4n)(2×3)+(2n2 −2n)(3×3)

R1(HMn) = 42n2 −42n.

Here, I came up after calculating topological co indices for Mobius strip graph. Now,
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I’m planning to compare topological co indices with their entropies in section 4.3.3 and

with heat of formation in section 4.3.4 in the form of graph by using curve fitting method.

after all the calculations, I have included tables that show the results of our calculations for

the corresponding topological indices and co indices in Table 4.5, 4.6, 4.7 and 4.8.

Here, I specify the determination of entropy values, which are derived from calculations

Table 4.5: Comparison of B1, B2, HB1, HB2 and SB indicators for HMn

[n] B1 B2 HB1 HB2 SB
3 174 252 1026 2268 3.1281
4 232 336 1368 3024 4.1708
5 290 420 1710 3780 5.2135
6 348 504 2052 4536 6,2562
7 406 588 2394 5292 7.2989
8 464 672 2736 6048 8.3416
9 522 756 3078 6804 9.3843
10 580 840 7560 7560 10.427

Table 4.6: Comparison of MB1, MB2, ReZG1, ReZG2 and ReZG3 indicators for HMn

[n] MB1 MB2 ReZG1 ReZG2 ReZG3
3 1.3052 0.9250 12 18.9 522
4 1.7403 1.2333 16 25.2 696
5 2.1753 1.5417 20 31.5 870
6 2.6104 1.8500 24 37.8 1044
7 3.0455 2.1583 28 44.1 1218
8 3.4805 2.4667 32 50.4 1392
9 3.9156 2.7750 36 56.7 1566
10 4.3506 3.0833 40 63 1740

Table 4.7: Comparison of M1, M2, HM, PM1 and PM2 indicators for HMn

[n] M1 M2 HM PM1 PM2
3 192 252 1032 8640 15552
4 384 504 2064 34560 62208
5 640 840 3440 96000 172800
6 960 1260 5160 216000 388800
7 1344 1764 7224 423360 762048
8 1792 2352 9632 752640 1354752
9 2304 3024 12384 1244160 2239488
10 2880 3780 15480 1944000 3499200
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Table 4.8: Comparison of F , R−1
2

, R−1, R 1
2

and R1 indicators for HMn

[n] F R−1
2

R−1 R 1
2

R1

3 528 13.7982 5.3333 94.788 252
4 1056 27.5964 10.6667 189.576 504
5 1760 45.9940 17.7778 315.96 840
6 2640 68.9910 26.6667 473.94 1260
7 3696 96.5874 37.3333 663.516 1764
8 4928 128.7832 49.7778 884.688 2352
9 6336 165.5784 64 1137.456 3024
10 7920 206.9730 80 1421.82 3780

involving their corresponding topological indices.

EReZG1(HMn) = log(4n)− 1
4n

[(5/6)(4n)log(5/6)+(6/9)(n)log(6/9)]

EReZG2(HMn) = log
(

63n
10

)
− 1

63n
10

[(6/5)(4n)log(6/5)+(9/6)(n)log(9/6)]

EReZG3(HMn) = log(174n)− 1
174n

[(30)(4n)log(30)+(54)(n)log(54)]

EB1(HMn) = log(58n)− 1
58n

× [(11)(4n)log(11)+(14)(n)log(14)]

EB2(HMn) = log(84n)− 1
84n

[(15)(4n)log(15)+(24)(n)log(24)]

EMB1(HMn) = log
(

67
154

n
)
− 1

67
154n

× [(
1

11
)(4n)log(

1
11

)+(
1
14

)(n)log(
1

14
)

EMB2(HMn) = log
(

37
120

n
)
− 1

37
120n

× [(
1

15
)(4n)log(

1
15

)+(
1
24

)(n)log(
1

24
)

EHB1(HMn) = log(342n)− 1
342n

× [(61)(4n)log(61)+(98)(n)log(98)

EHB2(HMn) = log(756n)− 1
756n

× [(117)(4n)log(117)+(288)(n)log(288)

ESB(HMn) = log(1.0427n)− 1
1.0427n

[(0.2134)(4n)log(0.2134)

+ (0.1890)(n)log(0.1890)]

Now, I figuring out entropy values, these values come from doing calculations related to
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Table 4.9: Comparison of EB1 , EB2 , EHB1 , EHB2 and SB for HMn

[n] EB1 EB2 EHB1 EHB2 ESB

3 1.1739 1.1670 1.1668 1.1384 1.1756
4 1.2988 1.2919 1.2918 1.2634 1.3005
5 1.3957 1.3888 1.3887 1.3603 1.3974
6 1.4749 1.4680 1.4678 1.4395 1.4766
7 1.5419 1.5350 1.5348 1.5064 1.5436
8 1.5998 1.5930 1.5928 1.5644 1.6015
9 1.6510 1.6441 1.6439 1.6155 1.6527
10 1.6968 1.6899 1.6897 1.6613 1.6985

Table 4.10: Comparison of EMB1 , EMB2 , EReZG1 , EReZG2 and EReZG3 for HMn

[n] EMB1 EMB2 EReZG1 EReZG2 EReZG3

3 1.1743 1.1698 1.1745 1.1742 1.1613
4 1.2992 1.2948 1.2995 1.2991 1.2863
5 1.3961 1.3917 1.3964 1.3961 1.3832
6 1.4753 1.4708 1.4755 1.4752 1.4624
7 1.5422 1.5378 1.5425 1.5422 1.5293
8 1.6002 1.5958 1.6005 1.6002 1.5873
9 1.6514 1.6469 1.6516 1.6513 1.6384
10 1.6971 1.6927 1.6974 1.6971 1.6842

their respective topological co indices.

EM1
(HMn) = log(32n2 −32n)− 1

32n2 −32n
× [(5)(4n2 −4n)log(5)+(6)(2n2 −2n)log(6)]

EM2
(HMn) = log(42n2 −42n)− 1

42n2 −42n
× [(6)(4n2 −4n)log(6)+(9)(2n2 −2n)log(9)]

EHM(HMn) = log(172n2 −172n)− 1
172n2 −172n

× [(25)(4n2 −4n)log(25)+(36)(2n2 −2n)log(36)]

EPM1
(HMn) = log(240n4 −480n3 +240n2)− 1

240n4 −480n3 +240n2

× [(5)(4n2 −4n)log(5)+(6)(2n2 −2n)log(6)]

EPM2
(HMn) = log(432n4 −864n3 +432n2)− 1

432n4 −864n3 +432n2

× [(6)(4n2 −4n)log(6)+(9)(2n2 −2n)log(9)]
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EF(HMn) = log(88n2 −88n)− 1
88n2 −88n

× [(13)(4n2 −4n)log(13)+(18)(2n2 −2n)log(18)]

ER−1
2

(HMn) = log(2.2997n2 −2.2997n)− 1
2.2997n2 −2.2997n

×
[

1

6
1
2
(4n2 −4n)log

(
1

6
1
2

)
+

1

9
1
2
(2n2 −2n)log

(
1

9
1
2

)]
ER−1

(HMn) = log
(

8
9

n2 − 8
9

n
)
− 1

8
9n2 − 8

9n

×
[

1
6
(4n2 −4n)log

(
1
6

)
+

1
9
(2n2 −2n)log

(
1
9

)]
ER 1

2

(HMn) = log(15.7980n2 −15.7980n)− 1
15.7980n2 −15.7980n

×
[
(6)

1
2 (4n2 −4n)log((6)

1
2 )+(9)

1
2 (2n2 −2n)log((9)

1
2 )
]

ER1
(HMn) = log(42n2 −42n)− 1

42n2 −42n
× [6(4n2 −4n)log(6)+9(2n2 −2n)log(9)]

The amount of heat absorbed or evolved when one mole of a compound is formed from its

Table 4.11: Comparison of EM1
, EM2

, EHM, EPM1
and EPM2

for HMn

[n] EM1
EM2

EHM EPM1
EPM2

3 1.5546 1.5478 1.5494 3.9203 4.1780
4 1.8557 1.8488 1.8505 4.5305 4.7869
5 2.0775 2.0707 2.0723 4.9774 5.2334
6 2.2536 2.2468 2.2484 5.3312 5.5870
7 2.3997 2.3929 2.3945 5.6244 5.8800
8 2.5247 2.5178 2.5195 5.8749 6.1304
9 2.6338 2.6270 2.6286 6.0935 6.3490
10 2.7307 2.7239 2.7255 6.2876 6.5430

constituent elements. And the standard ebthalpy of formation measured in units of energy

per amount of substance, usually calculated in kJ/mol. We used Avogagro’s number to

figure out the enthalpy (a measure of energy) for one unit of a Hexagonal Mobius strip,

and we found it to be 49.04kJ/mol. Then, to get the total energy for the entire cell, we

multiplied this value by the number of formula units in the cell. Additionally, we noticed

that the heat of formation (a measure of the stability of a chemical compound) for the
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Table 4.12: Comparison of EF , ER−1
2

,ER−1
, ER 1

2

and ER1
for HMn

[n] EF ER−1
2

ER−1
ER 1

2

ER1

3 1.5509 1.6481 1.5492 2.0263 1.5478
4 1.8519 1.9115 1.8502 2.2099 1.8488
5 2.0738 2.1152 2.0721 2.3619 2.0707
6 2.2498 2.2811 2.2481 2.4913 2.2468
7 2.3960 2.4208 2.3943 2.6041 2.3929
8 2.5209 2.5415 2.5192 2.7039 2.5178
9 2.6301 2.6476 2.6284 2.7934 2.6270
10 2.7270 2.7423 2.7253 2.8746 2.7239

Hexagonal Mobius strip as we increase the number of cells. Specially, as the number of

formula units goes from [3] to [10],the heat of formation decreases from 0.7329×10−21 to

8.1435×10−21.

Table 4.13: Heat of Formation of HMn

[n] Units HoF
[3] 9 0.7329×10−21

[4] 16 1.3030×10−21

[5] 25 2.0359×10−21

[6] 36 2.9317×10−21

[7] 49 3.9903×10−21

[8] 64 5.2118×10−21

[9] 81 6.5962×10−21

[10] 100 8.1435×10−21

4.3 Rational Curve Fitting Between Indices/Co Indices and Entropy

We are using a special method called rational curve fitting to see how entropy/HoF (Heat of

Formation) is connected to different system indicators. Curve fitting can be used as an aid

for data visualization, to infer values of a function where no data are available, and to sum-

marize the relationship among two or more variables.To do this, we made a special math

model using rational curve fitting that helps us find patterns and connections between en-

tropy/HoF and these indicators more easily. Specifically, we are studying how entropy/Hof

relates to indicators named Redefined Zagreb & K Banhatti indices and Randic, Forgotten

and Zagreb co indices. In this process, we are looking at three important things: root mean
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squared error (RMSE), R2 and sum of squared error (SSE). Lower values mean our results

are more accurate, and if the R2 value is closed to 1, it shows thar our line fits the data

points well.

We are mainly interested in how closely connected Redefined Zagreb & K Banhatti indices

and Randic, Forgotten and Zagreb co indices are their respective entropies/HoF for HMn.

we have put the results in tables 4.14, 4.15, 4.16 and 4.17 respectively, making it easier for

us to see how strongly these variables are linked based on the measures we talked about

Table 4.14: Connection Between Indices and Entropies for HMn

Indicators FitType SSE R2 Ad justed −R2 RMSE
B1 Rat24 1.487×10−7 1 1 0.0003857
B2 Rat32 2.85×10−7 1 1 0.0003775
HB1 Rat24 3.997×10−8 1 1 0.0001999
HB2 Rat24 4.839×10−8 1 1 0.00022
SB Rat23 1.974×10−5 0.9999 0.9997 0.003141
MB1 Rat14 3.459×10−7 1 1 0.0004159
MB2 Rat24 8.354×10−7 1 1 0.000914
ReZG1 Rat24 1.22×10−7 1 1 0.0003493
ReZG2 Rat33 1.617×10−8 1 1 0.0001272
ReZG3 Rat24 4.297×10−7 1 1 0.0006555

Table 4.15: Connection between indicators and HoF for HMn

Indicators FitType SSE R2 RMSE
B1 Rat22 3.158×10−7 1 0.0003245
B2 Rat24 3.64×10−5 1 0.006033
HB1 Rat23 1.31×10−6 1 0.0008094
HB2 Rat31 5.446×10−9 1 0.00004261
SB Rat23 5.228×10−4 1 0.01617
MB1 Rat23 5.572×10−4 1 0.01669
MB2 Rat22 1.023×10−6 1 0.000584
ReZG1 Rat23 5.231×10−4 1 0.01617
ReZG2 Rat23 8.953×10−5 1 0.006691
ReZG3 Rat15 1.531×10−8 1 0.0001237

4.3.1 Models of Indices and Entropies by Using Rational Curve Fitting

We are discussing how we use a method called rational curve fitting to create models for

different indices and entropies. This helps us understand and represent the relationships
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Table 4.16: Connection between co indices and entropies for HMn

Indicators FitType SSE R2 Ad justed −R2 RMSE
M1 Rat32 4.475×10−8 1 1 0.0001496
M2 Rat22 7.449×10−7 1 1 0.0004983
HM Rat33 1.525×10−8 1 1 0.0001235
PM1 Rat33 2.985×10−7 1 1 0.0005463
PM2 Rat33 2.864×10−7 1 1 0.0005352
F Rat24 5.833×10−6 1 1 0.002415
R−1

2
Rat22 5.783×10−7 1 1 0.0004391

R−1 Rat22 7.111×10−7 1 1 0.0004869
R 1

2
Rat32 1.399×10−9 1 1 2.645 ×

10−5

R1 Rat32 1.972×10−8 1 1 9.93×10−5

Table 4.17: Connection between co indices and HoF for HMn

Indicators FitType SSE R2 RMSE
M1 Rat22 2.55×10−7 1 0.0002916
M2 Rat22 2.379×10−7 1 0.0002816
HM Rat24 7.413×10−8 1 0.0002723
PM1 Rat32 1.114×10−4 1 0.007464
PM2 Rat32 1.114×10−4 1 0.007464
R−1

2
Rat32 3.418×10−9 1 4.134 ×

10−5

R−1 Rat32 6.776×10−8 1 0.0001841
R 1

2
Rat22 4.705×10−7 1 0.000396

R1 Rat15 1.574×10−7 1 0.0003967
F Rat24 6.131×10−7 1 0.000783

between these factors in a simple way.

E(B1) =
p1(B1)

2 + p2(B1)+ p3

(B1)4 +q1(B1)3 +q2(B1)2 +q3(B1)+q4

Where p1 = 601.2, CB = (−5514,6717). p2 = 1294, CB = (−1.149e+04,1.408e+04).

p3 = −979.7, CB = (−1.706e+ 04,1.51e+ 04). q1 = −8.717, CB = (−69.53,52.09).

q2 = 284.4, CB = (−2559,3127). q3 = 927.8, CB = (−8483,1.034e+04) and q4 =−649,

CB = (−1.13e+04,1e+04).

E(B2) =
p1(B2)

3 + p2(B2)
2 + p3(B2)+ p4

(B2)2 +q1(B2)+q2
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Where p1 = 0.0515, CB = (−3.494,3.597). p2 = 2.572, CB = (−235.2,240.4). p3 =

28.16, CB = (−1.182e+04,1.188e+04). p4 = 60.88, CB = (−3.206e+04,3.218e+04).

q1 = 14.33, CB = (−5551,5580) and q2 = 40.51, CB = (−2.133e+04,2.141e+04).

Figure 4.1: (B1) vs (EB1) and (B2) vs (EB2) for HMn

E(HB1) =
p1(HB1)

2 + p2(HB1)+ p3
(HB1)4 +q1(HB1)3 +q2(HB1)2 +q3(HB1)+q4

Where p1 = 567.7, CB = (−2287,3422). p2 = 1350, CB = (−1.646e+04,1.916e+04).

p3 = −539.4, CB = (−3.465e+ 04,3.357e+ 04). q1 = −8.383, CB = (−33.09,16.33).

q2 = 268.4, CB = (−965.8,1503). q3 = 937.7, CB = (−8711,1.059e+ 04). and q4 =

−359, CB = (−2.306e+04,2.234e+04).

E(HB2) =
p1(HB2)

2 + p2(HB2)+ p3

(HB2)4 +q1(HB2)3 +q2(HB2)2 +q3(HB2)+q4

Where p1 = 565.2, CB = (−3105,4235). p2 = 1758, CB = (−1.808e+ 04,2.16e+ 04).

p3 = 607.9, CB=(−2.837e+ 04,2.959e+ 04). q1 = −7.79, CB = (−36.34,20.76). q2 =

264.7, CB = (−1332,1861). q3 = 1147, CB = (−1.027e+ 04,1.256e+ 04). and q4 =

412.4, CB = (−1.924e+04,2.007e+04).

E(SB) =
p1(SB)2 + p2(SB)+ p3

(SB)3 +q1(SB)2 +q2(SB)+q3
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Figure 4.2: (HB1) vs (EHB1) and (HB2) vs (EHB2) for HMn

Where p1 = 2543, CB = (−2.542e + 05,2.593e + 05). p2 = 9146, CB = (−9.103e +

05,9.286e+05), p3 = 3564, CB=(−3.524e+05,3.596e+05). q1 = 1100, CB=(−1.102e+

05,1.124e+ 05). q2 = 5786, CB = (−5.761e+ 05,5.877e+ 05). and q3 = 2356, CB =

(−2.33e+05,2.377e+05).

Figure 4.3: (SB) vs (ESB) for HMn

E(MB1) =
p1(MB1)+ p2

(MB1)4 +q1(MB1)3 +q2(MB1)2 +q3(MB1)+q4

Where p1 = 363.9, CB = (−1261,1988). p2 = 1255, CB = (−3305,5815). q1 =−2.228,

CB=(−4.85,0.3942). q2 = 0.2755, CB=(−20.01,20.56). q3 = 151.5, CB=(−598.2,901.1).

and q4 = 831.4, CB = (−2189,3851).

E(MB2) =
p1(MB2)

2 + p2(MB2)+ p3

(MB2)4 +q1(MB2)3 +q2(MB2)2 +q3(MB2)+q4
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Where p1 = 63.66, CB = (−2.16e + 04,2.173e + 04). p2 = 553.5, CB = (−6.386e +

04,6.497e+ 04). p3 = 1291, CB = (−3.147e+ 04,3.405e+ 04). q1 = −3.167, CB =

(−210.1,203.7). q2 = 29.95, CB=(−9858,9918). q3 = 275.2, CB=(−4.192e+04,4.248e+

04). and q4 = 857.3, CB = (−2.09e+04,2.261e+04).

Figure 4.4: (MB1) vs (EMB1) and (MB2) vs (EMB2) for HMn

E(ReZG1) =
p1(ReZG1)

2 + p2(ReZG1)+ p3

(ReZG1)4 +q1(ReZG1)3 +q2(ReZG1)2 +q3(ReZG1)+q4

Where p1 = 624.4, CB = (−4925,6174). p2 = 1356, CB = (−1.439e+ 04,1.71e+ 04).

p3 = −937.5, CB = (−1.622e+ 04,1.434e+ 04). q1 = −9.455, CB = (−66.24,47.33).

q2 = 296.6, CB=(−2254,2847). q3 = 965, CB=(−9364,1.129e+04). and q4 =−620.8,

CB = (−1.074e+04,9496).

E(ReZG2) =
p1(ReZG2)

3 + p2(ReZG2)
2 + p3(ReZG2)+ p4

(ReZG2)3 +q1(ReZG2)2 +q2(ReZG2)+q3

Where p1 = 2.834, CB = (−0.267,5.936). p2 = 29.93, CB = (−128.5,188.3). p3 =

50.87, CB = (−578.4,680.2), p4 = −26.12, CB = (−825.4,773.2). q1 = 15.62, CB =

(−56.91,88.14). q2 = 35.56, CB=(−335.6,406.8). and q3 =−17.3, CB=(−546.6,512).

E(ReZG3) =
p1(ReZG3)

2 + p2(ReZG3)+ p3

(ReZG3)4 +q1(ReZG3)3 +q2(ReZG3)2 +q3(ReZG3)+q4
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Where p1 = 86.8, CB=(−1.452e+04,1.47e+04). p2 = 629.1, CB=(−2.77e+04,2.896e+

04). p3 = 1235, CB = (−4.615e+04,4.862e+04). q1 =−2.401, CB = (−174.5,169.7).

q2 = 38.12, CB = (−6901,6978). q3 = 330.4, CB = (−2.098e+ 04,2.164e+ 04). and

q4 = 824.8, CB = (−3.083e+04,3.248e+04).

Figure 4.5: (ReZ1) vs (EReZ1), (ReZ2) vs (EReZ2) and (ReZ3) vs (EReZ3) for HMn

4.3.2 Models Of Indices And Heat Of Formation By Using Curve Fitting:

HoF(B1) =
p1(B1)

2 + p2(B1)+ p3

(B1)2 +q1(B1)+q2

Where p1 = 1863, CB=(−1.09e+04,1.463e+04). p2 = 9899, CB=(−5.773e+04,7.753e+

04). p3 = 1.315e+04, CB=(−7.651e+04,1.028e+05). q1 =−3.609, CB=(−16.17,8.953).
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and q2 = 3822, CB = (−2.224e+04,2.988e+04).

HoF(B2) =
p1(B2)

2 + p2(B2)+ p3

(B2)4 +q1(B2)3 +q2(B2)2 +q3(B3)+q4

Where p1 = −70.2, CB = (−1213,1073). p2 = −58.71, CB = (−5502,5384). p3 =

220.9, CB = (−6812,7254). q1 = −5.789, CB = (−18.46,6.882). q2 = 20.35, CB =

(−55.98,96.69). q3 =−65.65, CB=(−357.9,226.6). and q4 = 64.19, CB=(−1980,2108).

Figure 4.6: (B1) vs HoF and (B2) vs HoF for HMn

HoF(HB1) =
p1(HB1)

2 + p2(HB1)+ p3

(HB1)3 +q1(HB2)2 +q2(HB2)+q3

Where p1 = 448.3, CB = (−3120,4017). p2 = 2330, CB = (−1.699e+04,2.165e+04).

p3 = 3040, CB = (−2.288e+04,2.896e+04). q1 =−4.131, CB = (−15.55,7.289). q2 =

11.42, CB = (−55.7,78.55). and q3 = 883.7, CB = (−6650,8418).

HoF(HB2) =
p1(HB2)

3 + p2(HB2)
2 + p3(HB2)+ p4

(HB2)+q1

Where p1 = 0.4886, CB= (0.4885,0.4887). p2 = 2.719, CB= (2.133,3.305). p3 = 4.109,

CB = (0.9994,7.218). p4 = 0.8865, CB = (−3.239,5.012). and q1 = 0.2577, CB =

(−0.9414,1.457).
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Figure 4.7: (HB1) vs HoF and (HB2) vs HoF for HMn

HoF(SB) =
p1(SB)2 + p2(SB)+ p3

(SB)3 +q1(SB)2 +q2(SB)+q3

Where p1 = 35.36, CB = (5.353,65.38). p2 = 89.55, CB = (−37.49,216.6), p3 = 33.34,

CB=(−124.6,191.3). q1 =−5.314, CB=(−7.258,−3.37). q2 = 18.83, CB=(8.813,28.86).

and q3 = 9.707, CB = (−36.2,55.61).

Figure 4.8: (SB) vs HoF for HMn

HoF(MB1) =
p1(MB1)

2 + p2(MB1)+ p3

(MB1)3 +q1(MB1)2 +q2(MB1)+q3

Where p1 = 34.29, CB = (5.726,62.86). p2 = 63.51, CB = (−49.4,176.4). p3 =−16.42,

CB=(−160.7,127.9). q1 =−5.894, CB=(−7.789,−3.999). q2 = 22.14, CB=(10.93,33.35).

and q3 =−4.791, CB = (−46.73,37.15).
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HoF(MB2) =
p1(MB2)

2 + p2(MB2)+ p3

(MB2)2 +q1(MB2)+q2

Where p1 = 1005, CB = (−5714,7723). p2 = 5346, CB = (−3.019e+ 04,4.088e+ 04).

p3 = 7108, CB = (−3.998e+ 04,5.42e+ 04). q1 = −3.677, CB = (−15.47,8.112). and

q2 = 2066, CB = (−1.162e+04,1.575e+04).

Figure 4.9: (MB1) vs HoF and (MB2) vs HoF for HMn

HoF(ReZG1) =
p1(ReZG1)

2 + p2(ReZG1)+ p3

(ReZG1)3 +q1(ReZG1)2 +q2(ReZG1)+q3

Where p1 = 35.27, CB = (5.385,65.15). p2 = 89.07, CB = (−37.47,215.6). p3 = 32.72,

CB=(−124.6,190.1). q1 =−5.313, CB=(−7.245,−3.382). q2 = 18.83, CB=(8.856,28.81).

and q3 = 9.526, CB = (−36.2,55.25).

HoF(ReZG2) =
p1(ReZG2)

2 + p2(ReZG2)+ p3

(ReZG2)3 +q1(ReZG2)2 +q2(ReZG2)+q3

Where p1 = 5890, CB= (−3.402e+06,3.414e+06). p2 = 2.727e+04, CB= (−1.579e+

07,1.585e+ 07). p3 = 3.299e+ 04, CB = (−1.915e+ 07,1.921e+ 07). q1 = −146.9,

CB = (−8.255e+ 04,8.225e+ 04). q2 = 721.3, CB = (−4.083e+ 05,4.097e+ 05). and

37



q3 = 9576, CB = (−5.558e+06,5.577e+06).

HoF(ReZG3)=
p1(ReZG3)+ p2

(ReZG3)5 +q1(ReZG3)4 +q2(ReZG3)3 +q3(ReZG3)2 +q4(ReZG3)+q5

Where p1 = −845.1, CB = (−2249,558.4). p2 = −1969, CB = (−5159,1222). q1 =

−5.387, CB = (−9.963,−0.8104). q2 = 18.24, CB = (−7.121,43.6). q3 = −58.62,

CB = (−147.7,30.45). q4 = 185.5, CB = (−105.6,476.7). and q5 = −572.2, CB =

(−1499,355).

Figure 4.10: (ReZ1) vs HoF , (ReZ2) vs HoF and (ReZ3) vs HoF for HMn

4.3.3 Models Of Co Indices And Entropies By Using Rational Curve Fitting

We are discussing how we use a method called rational curve fitting to create models for

different co indices and entropies. This helps us understand and represent the relationships

between these factors in a simple way.
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E(M1) =
p1(M1)

3 + p2(M1)
2 + p3(M1)+ p4

(M1)2 +q1(M1)+q2

Where p1 = 0.0459, CB= (0.02733,0.06447). p2 = 3.294, CB= (3.189,3.4). p3 = 12.23,

CB = (10.05,14.41). p4 = 10.84, CB = (7.946,13.74). q1 = 4.518, CB = (3.767,5.269)

and q2 = 4.538, CB = (3.325,5.751).

Entropy(M2) =
p1(M2)

2 + p2(M2)+ p3

(M2)2 +q1(M2)+q2

Where p1 = 3.568, CB = (3.48,3.655). p2 = 18.05, CB = (15.83,20.26). p3 = 18.62,

CB = (15.48,21.77). q1 = 6.539, CB = (5.777,7.301) and q2 = 7.819, CB = (6.5,9.137).

Figure 4.11: (M1) vs (EM1
) and (M2) vs (EM2

) for HMn

E(HM) =
p1(HM)3 + p2(HM)2 + p3(HM)+ p4

(HM)3 +q1(HM)2 +q2(HM)+q3

Where p1 = 3.871, CB= (−0.5159,8.258). p2 = 40.5, CB= (−276.7,357.7). p3 = 103.8,

CB=(−1081,1288). p4 = 76.51, CB=(−978.3,1131), q1 = 13.33, CB=(−82.99,109.7).

q2 = 39.27, CB = (−399,477.6) and q3 = 32.09 CB = (−410.3,474.5).

E(F) =
p1(F)2 + p2(F)+ p3

(F)4 +q1(F)3 +q2(F)2 +q3(F)+q4
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Figure 4.12: (HM) vs (EHM) for HMn

Where p1 = 279, CB = (−832.3,1390). p2 = 386.5, CB = (−3396,4169). p3 =−34.59,

CB=(−3616,3547). q1 =−4.869, CB=(−14.98,5.244). q2 = 94.69, CB=(−255.1,444.4).

q3 = 164.1, CB = (−1235,1563). and q4 =−14.5, CB = (−1516,1487).

Figure 4.13: (F) vs (EF) for HMn

E(R−1
2
) =

p1(R−1
2
)2 + p2(R−1

2
)+ p3

(R−1
2
)2 +q1(R−1

2
)+q2

Where p1 = 3.589, CB = (3.502,3.677). p2 = 18.79, CB = (16.43,21.15). p3 = 20, CB =

(16.53,23.48). q1 = 6.751, CB = (5.948,7.555) and q2 = 8.299, CB = (6.859,9.739).

E(R−1) =
p1(R−1)

2 + p2(R−1)+ p3

(R−1)2 +q1(R−1)+q2

Where p1 = 3.567, CB = (3.482,3.652). p2 = 18, CB(15.85,20.15). p3 = 18.56, CB =

(15.52,21.6). q1 = 6.52, CB = (5.783,7.258) and q2 = 7.786, CB = (6.51,9.062).

E(R 1
2
) =

p1(R 1
2
)3 + p2(R 1

2
)2 + p3(R 1

2
)+ p4

(R 1
2
)2 +q1(R 1

2
)+q2
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Figure 4.14: (R−1
2
) vs

(
ER−1

2

)
and (R−1) vs (ER−1

) for HMn

Where p1 = 0.0384, CB = (0.03372,0.04309). p2 = 3.401, CB = (3.369,3.432). p3 =

14.31, CB=(13.5,15.13). p4 = 14.07,CB=(12.85,15.28). q1 = 4.997, CB=(4.727,5.267)

and q2 = 5.419, CB = (4.952,5.886).

E(R1) =
p1(R1)

3 + p2(R1)
2 + p3(R1)+ p4

(R1)2 +q1(R1)+q2

Where p1 = 0.04409, CB = (0.03068,0.05749). p2 = 3.303, CB = (3.225,3.381). p3 =

12.54, CB=(10.93,14.15). p4 = 11.28, CB=(9.135,13.43). q1 = 4.637, CB=(4.08,5.194)

and q2 = 4.735, CB = (3.834,5.637)

E(PM1) =
p1(PM1)

3 + p2(PM1)
2 + p3(PM1)+ p4

(PM1)3 +q1(PM1)2 +q2(PM1)+q3

Where p1 = 7.163, CB = (6.585,7.742). p2 = 41.78, CB = (6.139,77.41). p3 = 61.1,

CB = (−12.83,135). p4 = 26.23, CB = (−11.5,63.97). q1 = 6.578, CB = (1.12,12.04).

q2 = 10.19, CB(−2.045,22.43) and q3 = 4.547, CB = (−1.991,11.09).

E(PM2) =
p1(PM2)

3 + p2(PM2)
2 + p3(PM2)+ p4

(PM2)3 +q1(PM2)2 +q2(PM2)+q3
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Figure 4.15: (R 1
2
) vs (ER 1

2

), (R1) vs (ER1
) for HMn

Where p1 = 7.414, CB = (6.859,7.969). p2 = 43.15, CB = (7.667,78.63). p3 = 63.07,

CB=(−10.77,136.9). p4 = 27.08, CB=(−10.69,64.85). q1 = 6.533, CB=(1.303,11.76).

q2 = 10.09, CB = (−1.635,21.82) and q3 = 4.495, CB = (−1.772,10.76).

Figure 4.16: (PM1) vs (EPM1
), (PM2) vs (EPM1

) for HMn
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4.3.4 Models Of Co Indices And Heat Of Formation By Using Curve Fitting:

HoF(M1) =
p1(M1)

2 + p2(M1)+ p3

(M1)2 +q1(M1)+q2

Where p1 = 701, CB = (482.7,919.3). p2 = 2417, CB = (1569,3266). p3 = 2017, CB =

(1251,2783). q1 = 273.1, CB = (186.9,359.3) and q2 = 516.9, CB = (320.7,713)

HoF(M2) =
p1(M2)

2 + p2(M2)+ p3

(M2)2 +q1(M2)+q2

Where p1 = 698.6, CB = (492.3,905). p2 = 2400, CB = (1601,3199). p3 = 1997, CB =

(1278,2716). q1 = 272.1, CB = (190.6,353.5) and q2 = 511.8, CB = (327.6,696).

Figure 4.17: (M1) vs HoF and (M2) vs HoF for HMn

HoF(HM) =
p1(HM)2 + p2(HM)+ p3

(HM)4 +q1(HM)3 +q2(HM)2 +q3(HM)+q4

Where p1 = 6382,CB = (−1.266e+05,1.394e+05).p2 = 2.005e+04,CB = (−4.19e+

05,4.592e+05).p3 = 1.558e+04,CB = (−3.393e+05,3.704e+05).q1 =−4.846,CB =

(−37.85,28.16).q2 = 19.85,CB=(−278.8,318.5).q3 = 2462,CB=(−4.912e+04,5.405e+

04)andq4 = 3993,CB = (−8.694e+04,9.493e+04).

HoF(F) =
p1(F)2 + p2(F)+ p3

(F)4 +q1(F)3 +q2(F)2 +q3(F)+q4

43



Figure 4.18: (HM) vs HoF for HMn

Where p1 = −2007, CB = (−6.89e+ 04,6.489e+ 04). p2 = −7288, CB = (−2.16e+

05,2.014e+ 05). p3 = −6293, CB = (−1.678e+ 05,1.552e+ 05). q1 = −2.16, CB =

(−44.79,40.47). q2 = −1.036, CB = (−231.6,229.5). q3 = −786.4, CB = (−2.658e+

04,2.5e+04) and q4 =−1613, CB = (−4.299e+04,3.976e+04).

Figure 4.19: (F) vs HoF for HMn

HoF(R−1
2
) =

p1(R−1
2
)3 + p2(R−1

2
)2 + p3(R−1

2
)+ p4

(R−1
2
)2 +q1(R−1

2
)+q2

Where p1 = 2.498, CB = (2.484,2.511). p2 = 19.49, CB = (16.13,22.84). p3 = 42.68,

CB = (31.09,54.27). p4 = 28.44, CB = (18.79,38.08). q1 = 6.053, CB = (4.739,7.366)

and q2 = 7.286, CB = (4.814,9.758).

HoF(R−1) =
p1(R−1)

3 + p2(R−1)
2 + p3(R−1)+ p4

(R−1)2 +q1(R−1)+q2

Where p1 = 2.508, CB = (2.479,2.538). p2 = 16.67, CB = (9.804,23.53). p3 = 32.89,

CB = (9.441,56.35). p4 = 20.27, CB = (0.9004,39.63). q1 = 4.948, CB = (2.263,7.634)

and q2 = 5.193, CB = (0.2302,10.16).
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Figure 4.20: (R−1
2
) vs HoF and (R−1) vs HoF for HMn

HoF(R 1
2
) =

p1(R 1
2
)2 + p2(R 1

2
)+ p3

(R 1
2
)2 +q1(R 1

2
)+q2

Where p1 = 674, CB = (400,948.1). p2 = 2324, CB = (1253,3395). p3 = 1939, CB =

(968.9,2909). q1 = 262.5, CB = (154.3,370.7) and q2 = 496.8, CB = (248.3,745.3).

HoF(R1) =
p1(R1)

+p2

(R1)5 +q1(R1)4 +q2(R1)3 +q3(R1)2 +q4(R1)+q5

Where p1 = 1843, CB = (−5648,9334). p2 = 2613, CB = (−8037,1.326e+ 04). q1 =

−3.46, CB = (−8.961,2.04). q2 = 5.39, CB = (−15.3,26.08). q3 = −9.475, CB =

(−50.07,31.12). q4 = 23.37, CB(−66.88,113.6) and q5 = 669.6, CB = (−2060,3399).

HoF(PM1) =
p1(PM1)

3 + p2(PM1)
2 + p3(PM1)+ p4

(PM1)2 +q1(PM1)+q2

Where p1 = 1.016, CB = (0.7663,1.266). p2 = 10.71, CB = (9.25,12.17). p3 = 18.63,

CB = (13.47,23.79). p4 = 8.763, CB = (5.529,12). q1 = 2.972, CB = (2.25,3.695) and

q2 = 1.882, CB = (1.182,2.582).

HoF(PM2) =
p1(PM2)

3 + p2(PM2)
2 + p3(PM2)+ p4

(PM2)2 +q1(PM2)+q2
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Figure 4.21: (R 1
2
) vs HoF , (R1) vs HoF for HMn

Where p1 = 1.016, CB = (0.7661,1.266). p2 = 10.71, CB = (9.25,12.17). p3 = 18.63,

CB = (13.47,23.8). p4 = 8.765, CB = (5.529,12). q1 = 2.972, CB = (2.25,3.695) and

q2 = 1.882, CB = (1.182,2.583).

At this point, we have finished our research on the topological description of the Mobius

Figure 4.22: (PM1) vs HoF , (PM2) vs HoF for HMn

strip through the use of degree based indices and co indices.
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Chapter 5
Conclusion

We found a strong connection between certain topological indices (entropies), co indices

(entropies) and heat of formation in our study for HMn. We used a tool called Rational

Curve Fitting in MATLAB to do this. We paid a lot of attention to two specific indices,

Redefined Zagreb and K Banhatti, and three specific co-indices, Zagreb, Randic and For-

gotten, and checked how closely they are related to their entropies/HoF. To make it easier to

understand, we also looked at pictures and graphs of these indices and co indices and how

they connect to entropies/HoF. By doing all this with Matlab, we could see patterns and

connections between indices and their entropies/HoF, co indices and their entropies/HoF.

Our discoveries provide us with a clear understanding of relationship within particular sys-

tem.
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