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ABSTRACT 
                                                     

Computing Connection Number-Based Indices for Graphs Derived 

from Metal Organic 
                                

 

Metal-organic networks consist of metals and organic ligands, forming their two 

distinctive components. In the realm of Mathematical Chemistry, metals are 

elements that exhibit metallic bonding and possess a propensity to readily form 

positive ions. Ligands, on the other hand, encompass neutral molecules or ions 

that attach to the central atoms or ions of metals, forming bonds. The recent surge 

in the significance of distance-based topological indices has led to their 

widespread use in exploring the structure-property relationship among molecules. 

Given their importance, this thesis focuses specifically on distance-based 

topological indices. It delves into Metal-organic Networks, examining their 

characteristics and properties. The thesis also involves the computation of several 

connection-based Zagreb indices to gain insights into the Metal-organic 

Networks. By emphasizing the role of distance-based topological indices, this 

study aims to contribute to our understanding of Metal-organic Networks and 

their structural features. The examination of these indices offers valuable 

information regarding connectivity and complexity, facilitating further research 

and potential applications in fields such as materials science, catalysis, and drug 

discovery. 
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Chapter 1

Introduction
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1.1 History

The Seven Bridges of Konigsberg problem first arise roughly 300 years ago, at a time when

nobody was familiar with the field of graph theory. At the time, Konigsberg was a Ger-

man city; today, it is a Russian city situated alongside the Pregel river.This city has seven

bridges, and they were used to connect it to two islands. The residents of Königsberg have

long wondered whether it is possible to cross all seven bridges without having to do it more

than once. Leonhard Euler (1707-1783) was the person who had figured out the problem

in 1736[17]. Euler’s conclusion regarding the issue was that it was either impossible or

impractical to cross the bridges in a single attempt except cross the other bridges more than

one time. In order to mark the problem in a fairly straightforward manner, he used the dots

to represent the landmasses as vertices and lines to represent the seven bridges as edges. He

not only demonstrated that it is impossible, but he also provided the explanation for why

this is the case.He simplify this by introducing the new term valence or degree of vertex

as a count of edges connecting to a specific vertex. The Eulerian graph is the result of

the Euler idea.Actually, this Eulerian idea created a brand-new branch of the mathematics

called ”Graph Theory”.

After a century, Kirchhoff assemble still another advancement in that area when he was

experimenting with electronic networks[7]. The characteristics of a brand-new class of

graphs termed trees has been put out by Sylvester and Caley. A different area of mathemat-

ics called linear algebra and graph theory are closely related. Poincare made yet another

discovery in the foundations of graph theory that is related to incidence matrix and matrix

theory. Mobius made the discovery of the family’s collection of complete graphs in 1840.

The four color problem was created by Gutherie in the theory of graphs in 1852. Graph

theory is a subject that is currently being utilized in many scientific domains, including

computer science like networks, chemistry like chemical graphs, electronics like electroni-

cally circuits, operations research as drainage systems, traffics flow, and telephone lines. It

is also utilized in optimization issues. Graph theory has several uses that are extremely ben-

eficial to people. Although graph theory belongs to Mathematics, its roots can be found in

many other fields including statistical data, Mechanical, Civil and Chemical Engineering.
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1.2 Elements of Basic Graph Theory

In this section we discussed some basic definations of graph theory that is useful for under-

standing the chemical structures.

1.2.1 Graph

A graph F is made up of non-empty finite set V(F) of vertices (or nodes) and a non-empty

finite set E(F) of different unordered pairs of vertices V(F) called edges.We refer E(F) as

edge set and V(F) as vertex set.

V(F)={v1,v2,v3,v4,v5}, E(F)={e1,e2,e3,e4,e5,e6,e7,e8}

Figure 1.1: A graph F

1.2.2 Subgraph

If a vertex set V(F′) and edge set E(F′) of F′ are subsets of the vertex set V(F′) and edge

set E(F′) of F. Then we say that F′ is a subgraph of F.

Figure 1.2: Subgraph(F′)
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1.2.3 Size and Order of Graph

A graph’s |V | number of the vertices determines the order of graph.A graph’s size is defined

by its number of edges, or |E|.

Figure 1.3: |V (G)|=5 and |E(G)|=8

1.2.4 Degree of Vertex

The amount of edges that are connected to a vertex is called the degree of that vertex in the

graph.This is denoted by d(v).

Figure 1.4: Vertices with degree

d(v1)=3

d(v2)=2

d(v3)=2

d(v4)=1
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1.2.5 Isolated Vertex

A vertex is called an isolated vertex, if no edge is connected to that vertex.In other words,

the vertex of 0 degree is called isolated vertex.

Figure 1.5: v2 is an isolated vertex.

1.2.6 Pendant Vertex

A vertex of the degree 1 is called pendant vertex. In Figure 1.5 v3,v4,v5 are pendant

vertices.

1.2.7 Odd Vertex

A vertex is said to be an odd vertex, if number of edges connected to that vertex is odd. In

other words, the vertex of odd degree is called an odd vertex.

Figure 1.6: All the vertices are odd.
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1.2.8 Even Vertex

A vertex is said to be an even vertex, if number of edges are connected to that vertex is

even. In other words, the vertex of even degree is called even vertex.

Figure 1.7: All the vertices are even.

1.2.9 Adjacent Vertices

If an edge connects two vertices in a graph, those vertices will be considered as adja-

cent.The single edge here that connects these two vertices keeps their vertices adjacent. In

Fig 1.8,v1 is adjacent to the v2,v3, except to v4,v5. Similarly, v2 is only adjacent to the

v1,v3, v3 is adjacent to the v1,v2,v4, v4 is adjacent to v3,v5 and v5 is only adjacent to the v4.

Figure 1.8: Graph with adjacent vertices.
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1.2.10 Neighborhood Vertex Set

The neighbourhood vertex set (NF(v)) of every vertex v in a graph F consists of all the

vertices adjacent to that vertex. Neighborhood of all vertices of Fig 1.1 are as follows:

NF(v1)={v2,v4,v5}

NF(v2)={v1,v3,v5}

NF(v3)={v2,v4,v5}

NF(v4)={v1,v3,v5}

NF(v5)={v1,v2,v3,v4}

1.2.11 Loop

When an edge which joins the vertex to itself is known as loop, e7 is a loop in this graph.

Figure 1.9: Graph with loop and multiple edges.

1.2.12 Multiple Edges

In a graph, multiple edges are any two or more than two edges these are connected to the

same pair of two vertices.

In Fig 1.9, e3 and e4 are multiple edges.

7



1.2.13 Adjacent Edges

In a graph, two or more edges that are adjacent edges if these edges have the common

vertex.

In Fig 1.10, e3,e4,e2 are adjacent edges at v2.

Figure 1.10: Graph with adjacent edges.

1.2.14 Pendent Edges

A graph F’s edge will be considered a pendant edge when any one of its vertices is a

pendant vertex.

In Fig 1.11 e1 is the pendent edge.

Figure 1.11: Graph with pendent edge.
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1.2.15 Simple Graph

A simple graph is one that is unweighted, undirected, and free of loops or multiple edges.

The graph in Fig 1.12 is simple graph.

Figure 1.12: Graph with no loop and multiple edges.

1.2.16 Multiple Graph

If a graph F’s has multiple edges or at least one loop, then its called multiple graph. The

graph in Fig 1.13 is a multiple graph.

Figure 1.13: Graph with multiple edges.
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1.2.17 Finite Graph

A graph is called finite if it has number of edges and vertices are finite.

Figure 1.14: Finite graph

1.2.18 Infinite Graph

A graph is known as infinite if they have the number of edges and vertices are infinite.

Figure 1.15: 2-Regular infinite graph

1.2.19 Planar Graph

If a graph is drawn on a plane aside from any edges are crossing, then it is said to be planar.

Figure 1.16: Planar graph
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1.2.20 Non-Planar Graph

If a graph can be draw on a plane and if any two edges crossing each other, then it is said

to be non-planar.

Figure 1.17: Non-planar graph

1.2.21 Regular Graph

If the degree of each vertex in the graph is equal, then this graph is said that regular.If each

vertex’s degree is K, a graph is said to be K regular..

Figure 1.18: 3-Regular graph

1.2.22 Walk

A walk is a pattern of a graph’s vertices and edges, therefore if we pass over the graph, we

obtain a walk. In Fig 1.19 v1−> v5−> v6−> v2−> v3−> v4−> v3−> v2 is a walk.

11



1.2.23 Path

A Path is like walk but no vertex and edge is repeated in this walk. In Fig 1.19 v1− >

v2−> v3−> v4 is a path.

Figure 1.19: Graph with walk and path

1.2.24 Cyclic Graph

A graph that has at least one cycle, or a path that starts and end at the same vertex without

going through any other vertices again, is referred to as cyclic graph. In Fig 1.20 v1− >

v3−> v4−> v1 is cycle.

Figure 1.20: cyclic graph
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1.2.25 Operation on Graphs

Take two graphs G1=(V1,E1) and G2=(V2,E2), then union of G1 and G2 is G=(V,E). Where

V=V1 ∪V2 ,E=E1 ∪E2.

V (V1 ∪V2) =V (V1)∪V (V2)

E(E1 ∪E2) = E(E1)∪ (E2)

.

V (V1 ∩V2) =V (V1)∩V (V2)

E(E1 ∩E2) = E(E1)∩ (E2)

.

Figure 1.21: Operations on graph
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2.1 Introduction

A branch of mathematics called chemical graph theory that merge chemistry and graph

theory. Chemical graph theory focuses on all aspects of applying graph theory to chem-

istry, including computational, theoretical, mathematical, and organic chemistry, as well as

bioinformatics and chemoinformatics. Topological indices are mathematical invariants of

chemical graphs, have shown to be useful tools for studying compounds’ physio-chemical

properties. In chemical graph theory, topological indices are especially important for the

study of (QSPR/QSAR).

The topological index can be seen as a distance metric that employs each chemical struc-

ture’s numerical value as a descriptor for the molecule under study. The Zagreb index,Weiner

index, sum connectivity index is well known indices in graph theory. In 2021, we find the

degree based topological indices of Supramolecular chain In dialkyltin complexes Of N-

salicylidene-L-valine[1]. Degree-based topological indices, distance-based topological in-

dices and spectrum-based topological indices are the three types of topological indices that

are commonly used. Recently distance based topological indices gain great importance and

use in the set of several different types of topological indices. They’re often used to inves-

tigate the structure-property relationship between molecules. Because of the importance of

distance-based topological indices in this thesis we will focus on the distance-based topo-

logical indices.

Recently, Naji et al. [16], has introduced the three connection based topological indices

named as,

First Zagreb Connection Index.

Second Zagreb Connection Index.

Third Zagreb Connection Index.

15



2.2 Connection Number of Vertex

The connection number of a vertex v is defined as the number of the vertices at a distance

two from that vertex v. It is denoted by w(v).

Figure 2.1: Connection number of v1,v2,v3,v6 is 2 and connection number of v4,v5 is 1.

Figure 2.2: Connection number of all vertices is 3.
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Figure 2.3: Connection number of vo is 0 and connection number of all other vertices is 3.

Figure 2.4: Connection number of all other vertices is 6.
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2.3 Distance Based Topological Indices

Topological indices can be calculated using the concept of degree of vertices and/or dis-

tance between two vertices. In this thesis, we discussed the distance based topological

indices.

One of the most famous and oldest topological index is Wiener Index W(G). Wiener in-

dex is defined as the sum of distances between any two atoms(vertices) in the molecules, in

terms of bonds (or edges). This index introduced by chemist Harold Wiener[21] in 1947. In

1972, Gutman and Trinajsti´c[13] defined the first degree-base topological index named as

first Zagreb index(M1) to calculate the pi-energy of linked molecules. After that year, the

2nd Zagreb Index (M2) was created by Gutman et al[14]. Many scientists and mathemati-

cians later used these topological indices thanks to theory and applications like operations

on graphs[18, 8]. Furtula and Ivan Gutman[10] introduced the third Zagreb index(forgotten

index) in 2015. Zagreb type indices have various applications in mathematical chemistry

and computational graph theory that’s why lot of researchers work on the Zagreb type

indices[6, 15, 5].

Recently, first Zagreb connection index(ẐC1)was introduced by Naji.[20] in 2017 and sec-

ond Zagreb connection index (ẐC2) was introduced by Naji and Soner in 2018. Ali and

Trinajstic[3] introduced modified first Zagreb connection index(ẐC∗
1) in 2018. Similarly

modified Zagreb connection indices and multiplicative modified Zagreb connection indices

are recently introduced by Javaid[19]. We cite for further information on the characteristics

and investigations of Zagreb connection indices[9, 4, 11, 12].
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2.4 Zagreb Connection Index

First Zagreb connection index of graph(F) is:

ẐC1(F) = ∑
v∈V (F)

[wF(v)]2, (2.4.1)

and second Zagreb connection index of graph(F)is :

ẐC2(F) = ∑
uv∈E(F)

[wF(u)×wF(v)], (2.4.2)

where w(u) represent connection number of u and w(v) represent the connection number

of v to the edge uv.

2.5 Modified Zagreb Connection Indices(mZCI)

Modified Zagreb connection indices are:

ZC∗
1(F) = ∑

uv∈E(F)
[wF(u)+wF(v)] (2.5.1)

ẐC∗
2(F) = ∑

uv∈E(F)
[dF(u)wF(v)+dF(v)wF(u)] (2.5.2)

ẐC∗
3(F) = ∑

uv∈E(F)
[dF(u)wF(u)+dF(v)wF(v)] (2.5.3)

ẐC∗
4(F) = ∑

uv∈E(F)
[dF(u)wF(u)×dF(v)wF(v)] (2.5.4)

Where,

ẐC∗
1(F) represent 1st mZCI.

ẐC∗
2(F) represent 2nd mZCI.

ẐC∗
3(F) represent 3rd mZCI.

ẐC∗
4(F) represent 4th mZCI.
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2.6 Multiplicative Zagreb Connection Indices(MZCI)

Multiplicative Zagreb connection indices are:

MẐC1(F) = ∏
v∈V (F)

[wF(v)]2 (2.6.1)

MẐC2(F) = ∏
uv∈E(F)

[wF(u)×wF(v)] (2.6.2)

MẐC3(F) = ∏
uv∈E(F)

[dF(u)×wF(v)] (2.6.3)

MẐC4(F) = ∏
uv∈E(F)

[wF(u)+wF(v)] (2.6.4)

where,

MẐC1(F) represent 1st MZCI.

MẐC2(F) represent 2st MZCI.

MẐC3(F) represent 3st MZCI.

MẐC4(F) represent 4st MZCI.

2.7 Modified Multiplicative Zagreb Connection Indices(mMZCI)

Modified multiplicative Zagreb connection indices are:

MẐC∗
1(F) = ∏

uv∈E(F)
[dF(u)wF(v)+dF(v)wF(u)] (2.7.1)

MẐC∗
2(F) = ∏

uv∈E(F)
[dF(u)wF(u)+dF(v)wF(v)] (2.7.2)

MẐC∗
3(F) = ∏

uv∈E(F)
[dF(u)wF(u)×dF(v)wF(v)] (2.7.3)

Where,

MẐC∗
1(F) represent 1st mMZCI.

MẐC∗
2(F) represent 2st mMZCI.

MẐC∗
3(F) represent 3st mMZCI.
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Chapter 3

Metal-Organic Networks
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Chapter 4

Conclusion

46



In this thesis we studied history, definition of that terms which is useful to understand

the structures such as (Graph, Subgraph, Size and Order of Graph, Degree of Vertex, Iso-

lated Vertex, Pendent Vertex, Odd Vertex, Even Vertex, Adjacent Vertices, Neighborhood

of Vertices, Adjacent Edges, Pendent Edges, simple Graph, Multiple Graph, Finite Graph,

Infinite Graph, Cyclic graph, Regular Graph, Planar and Non-Planar Graph, Walk, Path,

Operations on Graph). Then we discussed the structures and its formation. After that, we

studied some distance based topological indices and in this thesis we computed the Zagreb

connection based indices for metal-organic networks.
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