
An Introduction to Projective Geometry
and the Klein Quadric

By

Ammara Rashid

CIIT/FA21-RMT-101/LHR

MS Thesis

In

Mathematics

COMSATS University Islamabad

Lahore Campus - Pakistan

Spring, 2023



COMSATS University Islamabad, Lahore Campus

An Introduction to Projective Geometry and the
Klein Quadric

A Thesis Presented to

COMSATS University Islamabad

In partial fulfillment

of the requirement for the degree of

MS Mathematics

By

Ammara Rashid

CIIT/FA21-RMT-101/LHR

Spring, 2023

ii



An Introduction to Projective Geometry and the
Klein Quadric

A Post Graduate Thesis submitted to the name of Department of Mathemat-
ics as partial fulfilment of the requirement for the award of the degree of MS
Mathematics

Name Registration Number

Ammara Rashid CIIT/FA21-RMT-101/LHR

Supervisor

Prof. Dr. Sarfraz Ahmad

Professor,
Department of Mathematics

COMSATS University Islamabad, Lahore Campus

Co-Supervisor

Dr. Diletta Martinelli

Assistant Professor,
Department of Mathematics

Universiteit Van Amsterdam, Netherlands

June, 2023

iii



Final Approval

This thesis titled

An Introduction to Projective Geometry and the
Klein Quadric

By

Ammara Rashid

CIIT/FA21-RMT-101/LHR

Has been approved

For the COMSATS University Islamabad, Lahore Campus.

External Examiner:

Prof. Dr. Imran Javed
Centre for Advanced Studies in Pure & Applied Mathematics, BZU, Multan

Supervisor:

Prof. Dr. Sarfraz Ahmad
Department of Mathematics, (CUI) Lahore Campus

HoD:

Prof. Dr. Kashif Ali
Department of Mathematics, (CUI) Lahore Campus

iv



Declaration

I Ammara Rashid, CIIT/FA21-RMT-101/LHR, hereby state that my MS thesis titled “An
Introduction to Projective Geometry and the Klein Quadric” is my own work and has not
been submitted previously by me for taking any degree from this University ”COMSATS
University Islamabad, Lahore Campus” or anywhere else in the country/world. At any time
if my statement is found to be incorrect even after my Graduate the university has the right
to withdraw my MS degree.

Date:

Ammara Rashid
CIIT/FA21-RMT-101/LHR

v



Certificate

It is certified that Ammara Rashid, CIIT/FA21-RMT-101/LHR has carried out all the work
related to this thesis under my supervision at the Department of Mathematics, COMSATS
University Islamabad, Lahore Campus and the work fulfils the requirement for the award
of MS degree.

Date:

Supervisor

Prof. Dr. Sarfraz
Professor,
Department of Mathematics,
CUI, Lahore Campus

Head of Department:

Prof. Dr. Kashif Ali
Professor,
Department of Mathematics,
CUI, Lahore Campus

vi



DEDICATION

To

My beloved family and esteemed mentors

vii



ACKNOWLEDGEMENTS

With profound gratitude, I begin by acknowledging the infinite wisdom and benevolence of
Allah Almighty, the Creator of all universes, for granting me strength, guidance, and wis-
dom throughout this journey and expressing my deepest reverence to His Prophet Muham-
mad (PBUH), whose teachings and exemplary life continue to inspire me. Their divine
guidance has illuminated my path and bestowed me with the strength and perseverance to
embark on this scholarly endeavour.
I would like to express my deepest appreciation to my esteemed supervisor, Dr. Diletta
Martinelli, for her invaluable guidance, unwavering support, and insightful feedback. Her
expertise and dedication have played a pivotal role in shaping the outcome of this thesis.
Her mentorship has instilled in me a profound sense of curiosity and a commitment to ex-
cellence. I am truly fortunate to have had the opportunity to work under her supervision.
I would also like to extend my sincere thanks to Dr. Sarfraz Ahmad, whose mentorship
and valuable insights have greatly contributed to the development of my research. I would
also admire his valuable contribution and efforts as the Local Coordinator of the Interna-
tional Mathematics Master program. His intellectual guidance and encouragement have
been instrumental in broadening my perspective and fostering critical thinking. Addition-
ally, I would like to extend my heartfelt thanks to Dr. Stefano Luzzato for his pivotal role
as the Scientific Coordinator of the IMM program.
At this point, how can I forget my family, who has been my pillar of strength, I am eternally
grateful to my parents and siblings, whose unconditional love, support and unwavering
belief in my abilities have been a constant source of motivation and have been the driv-
ing force behind my accomplishments. Lastly, I extend my heartfelt thanks to my friends,
whose unwavering support, encouragement, and camaraderie have made this journey a
memorable one. Their presence has brought joy, laughter, and shared experiences that have
kept me motivated and focused throughout this endeavour.
Finally, I am once again grateful to my Lord who has given me consciousness and without
whose help the completion of this journey would not have been possible.

Ammara Rashid
CIIT/FA21-RMT-101/LHR

viii



ABSTRACT

An Introduction to Projective Geometry and the
Klein Quadric

In this thesis, the main topic is the Klein quadric and its properties. In order to study this
important geometric object, we will need to discuss the basics of projective geometry. We
will see how the Klein quadric is defined by a quadratic equation in a projective space
which has dimension 5. The main focus of the thesis will be to show that the Klein quadric
is an important example of parameter space and in particular, it parameterizes all the lines
in the projective space of dimension 3.
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Chapter 1

Introduction
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Algebraic geometry is a branch of mathematics that deals with the study of geometric ob-

jects defined by polynomial equations, known as algebraic varieties. In this thesis, our

focus lies specifically on the projective setting, where we investigate solutions of homo-

geneous polynomial equations in projective spaces, known as projective varieties We have

an interplay between algebra and geometry, that is, using the algebra of polynomial equa-

tions, we can understand the geometric properties of algebraic varieties. The classification

problem is a fundamental task in many areas of mathematics, and in algebraic geometry, it

revolves around the classification of algebraic varieties. The desire to classify these vari-

eties arises from the need to gain a deeper understanding of their structures and properties.

However, the classification problem is often complex and challenging.

To approach the classification problem, one effective strategy is to construct a parameter

space that parametrizes a specific class of algebraic varieties. This parameter space itself

becomes an algebraic variety, whose points are in one-to-one correspondence with the va-

rieties that we try to classify, providing a convenient framework to study and analyze the

desired class of algebraic varieties. The geometric properties of the parameter space offer

valuable insights into the properties of the algebraic varieties within the class.

It is essential that the parameter space be an algebraic variety and not merely a set. The

algebraic variety structure allows us to leverage its geometric properties to infer properties

about the class of algebraic varieties we aim to study. This algebraic structure grants us a

better understanding and control over the behaviour of families of algebraic varieties.

In algebraic geometry, we often require more than simple one-to-one correspondence be-

tween points in a parameter space and algebraic varieties in a collection. To gain better con-

trol over families of algebraic varieties, mathematicians have refined the notion of parame-

ter space and arrived at the construction of moduli spaces. Moduli spaces are fundamental

objects in various mathematical disciplines, from hyperbolic and birational geometry to

mathematical physics and string theory.[10][Lectures on birational geometry by C.Birkar]

This thesis focuses on laying the first basic mathematical foundations of moduli spaces by

studying the first examples of parameter spaces in detail. One such example is the Klein

quadric, which parametrizes lines in the three-dimensional projective space. By delving

into the Klein quadric and its properties, we aim to provide a comprehensive understanding
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of parameter spaces and their role in algebraic geometry.

By exploring the concepts outlined above, this thesis seeks to contribute to the field of pro-

jective geometry and the study of algebraic varieties as parameter spaces. The subsequent

chapters delve into specific aspects and propertiies of the Klein quadric and its implications

for understanding families of algebraic varieties.

Keeping in view this general structure of the thesis, a brief description of each chapter is

following.

In Chapter 2, titled “Preliminary Results,” we provide a concise introduction to the funda-

mental concepts of projective geometry. This chapter serves as the foundation for the rest of

the thesis. We cover topics such as projective spaces, projective transformations, projective

subspaces, incidence and collinearity, projective duality, and homogeneous coordinates.

By establishing these core ideas, we prepare the reader for the subsequent exploration of

the Klein quadric and its connection to projective geometry.

In Chapter 3, titled “Quadrices and Conics,” we explore the geometric representation of

symmetric bilinear forms in projective geometry. This chapter provides a brief overview of

quadrics and conics, which are fundamental geometric objects in projective geometry. By

understanding these concepts, we establish a connection between linear algebra and projec-

tive geometry, laying the foundation for the subsequent discussions on the Klein quadric.

Chapter 4 focuses on two main topics: exterior algebra and the Klein quadric. In this

chapter, we explore exterior algebra and its application in studying geometric properties.

It introduces decomposable vectors and presents the main theorem related to them. The

chapter then focuses on the Klein quadric, defining it as a parameter space for lines in

three-dimensional projective space. The significance of the Klein quadric in the study of

algebraic varieties is discussed.
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Chapter 2

Preliminary Results
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In this chapter, we introduce some essential notations and definitions in projective ge-

ometry that will serve as a foundation for all the material that will be discussed in this

thesis.

2.1 Preliminaries

To be able to define the main objects of study, we shall briefly introduce some basic defini-

tions.

Definition 2.1.1. Let K be a field and V be a (n+ 1)-dimensional K-vector space. The

Projective space Pn
K or the Projectivization of V P(V ) is the set of 1-dimensional vector

subspace of V , that is, all the lines in V passing through the origin.

Pn
K = P(V ) = {Vector subspaces of V having dimension 1}

Or equivalently, projectivization of V can be defined as V\{0} the quotient by an equiv-

alence relation.

P(V ) =V\{0}/∼λ (w.r.t. ∼λ )

v,w ∈V and v ∼λ w⇐⇒∃ λ ⊂ K∗such that v = λw

Definition 2.1.2. 1- dimensional projective space is called a projective line.

We explain in detail the construction of the real projective line i.e P1
R

Starting from the definition:

P1
R = {lines through the origin in R2}
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We can first start by picturing all the lines passing through the origin in R2. Then if we

consider an affine line r that is parallel to the x-axis, we see that every line that is different

from the x-axis would intersect exactly at one point on the affine line r. in this way, we

can build a one-to-one correspondence between points in the line r and the lines through

the origin that are different from the x-axis. So, we are missing only the x-axis, we need to

add this extra point, this is the point we called the point at infinity. Conseqiuently, the real

projective line is the union of the affine line and the point at infinity.

P1
R = A1

R∪{∞}

Here {∞} means point at infinity, where the x-axis and the affine line r meet.

Topologically, the circle S1 and the real projective line are homomorphic.

Definition 2.1.3. A projective space of dimension 2 is called projective plane.

We explain in detail the construction of the real projective plane i.e P2
R

From the definition:

P2
R = {lines through the origin in R3}

6



We can first start by picturing all the lines passing through the origin in R3. Then, if we

consider an affine plane π that is parallel to the xy-plane, we see that all the lines not con-

tained in the plane z = 0 would intersect exactly at one point in the affine plane π . In this

way, we can build a one-to-one correspondence between points in the plane π and the lines

through the origin that are not contained in the plane z = 0. So, we are missing only the

lines through the origin in the xy-plane, we need to add these lines and these lines are actu-

ally P1
R. The lines not contained in R3 are parameterized by π and consequently, P2

R is the

combination of affine plane and the real projective line.

P2
R = A2

R∪P1
R

Here, A2
R is an affine plane of all the lines which are not in the plane z = 0 and P1

R is the

real projective line having all the lines through the origin in the xy-plane z = 0

Now, move towards another important definition of homogenous coordinate. And be-

fore moving on to this definition, we define another important terminology in P(V )

Definition 2.1.4. The idea of a representative vector for a point in the Projective space is

important for our purposes. For any non-zero vector v, the 1-dimensional vector subspace

generated by V is a set of all non-zero multiples of the vector v ∈V . The point [v] ∈ P(V )

is therefore said to have v as a representative vector. It is obvious that if λ ̸= 0 then λv is

a another represents vector and therefore c
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Definition 2.1.5. Consider we pick a basis {u0, ...,un} for V . we can write the vector u as

n

∑
i=1

xiui

and the coordinates of u ∈ V are provided by the n+ 1 tuple {x0,x1, . . . ,xn}. If u ̸= 0,

we can see the respective point [u] ∈ P(V ) as [u] = [x0,x1, . . . ,xn] and we called these as

homogeneous coordinates of a given point in the projective space.

The following two properties characterize the homogeneous coordinates:

[u] = [x0,x1, . . . ,xn] are homogeneous coordinates of a given point [u] ∈ P(V ) if

1. ∃xi for 0≤ i≤ n such that xi ̸= 0

2. The coordinates are defined up to rescaling.

i.e for λ ̸= 0

[λx0,λx1, . . . ,λxn] = [x0,x1, . . . ,xn]

Definition 2.1.6. we can define affine charts as;

⊔
0

:= {[x0 : x1 : · · · : xn] ∈ Pn|x0 ̸= 0}

⇐⇒
(

x1

x0
, . . . ,

xn

x0

)
∈ An

K

Similarly, we can define
⊔

i for every i = 1,2 . . . ,n

Pn
K\

⊔
0

:= {[0 : x1 : · · · : xn] ∈ Pn}= P({x0 = 0})

= Pn−1
K

Thus for every n in Pn
K, we can define n+1 affine charts. We obtain that:

Pn
K = An

K∪P
n−1
K

where An
K
∼=

⊔
0 and Pn−1

K
∼= Pn\

⊔
0

8



Thus, the projective space is covered by the affine charts.

2.2 Linear Subspaces

Definition 2.2.1. The collection of vector subspaces of dimension 1 in a vector or linear

subspace W ⊂V constitutes a linear or vector subspace of the projective space P(V ).

i.e P(W ) is linear subspace of the P(V ).

Example 2.1. Let V be n+1 dimensional vector space and H = {x0 = 0} is hyperplane of

V . Then, P(H) of dimension n−1 is the linear subspace of P(V ) of dimension n.

Proposition 2.1. Let V be a (n+ 1) dimensional vector space and Pn
K be the projective

space associated to V . Given two distinct points p and q in Pn
K, there is a unique line

passing through them.

Proof. Let Pn
K be the projective space and let p= [v] and q= [w] be two points in projective

space. Here, v and w are representative vectors in V . Since p and q are distinct points, v

and w are linearly independent. Take, U , the plane in V spanned by v and w and so P(U) is

the line joining p and q. Suppose that P(U ′) is another such line,

⇒ v,w ∈U ′

Since U is spanned by v and w, any other vector subspace that contains v and w, it also

contains U , because the span is minimal. So,

⇒U ⊂U ′

and since dimension U is equal to dimension U ′ which is equal to 2, we can conclude that

U =U ′

Proposition 2.2. At the point at which two distinct lines intersect in a projective plane, this

must be unique.

Proof. Let V be a vector space of dimension 3 and P(V ) be the associated projective plane.

Let l = P(R) and r = P(R′) be the two lines in P2, where R and R′ are 2-dimensional vector

9



subspaces of V .

Since, l and r are distinct lines⇒ R and R′ are distinct planes.

Two distinct planes through the origin in a 3-dimensional vector space intersect in a line.

Now from the Grassmann formula of linear algebra[11],

dimV ≥ dim(R+R′) = dimR+dimR′−dim(R∩R′)

i.e.

3≥ 2+2−dim(R∩R′)

dim(R∩R′)≥ 1

But as we have 2-dimensional vector subspaces R and R′, so

dim(R∩R′)≤ 2

And since R and R′ are distinct so equality does not occur, therefore

⇒ dim(R∩R′) = 1

R∩R′ ⊂V

and R∩R′ is the point of intersection.

Then, we can conclude that l and r meet in the point P(R∩R′)

Example 2.2. Let p = [1 : 2 : 7] and q = [2 : −1 : 0] be the two points in P2. We want to

find the equation of the line passing through p and q.

Consider a point [x0 : x1 : x2] that belongs to the line passing through p and q. Take

A =


1 2 7

2 −1 0

x0 x1 x2


We want to impose that rank(A) = 2, because this would mean that the point [x0 : x1 : x2]

belongs to the span of p and q. Hence, the rank must be 2.
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This is equivalent to imposing that,

detA = 0

7x0 +14x1−3x2 = 0

Thus, {7x0 +14x1−3x2 = 0} is the required equation of line passing through p and q.

Example 2.3. Let p = [1 : −1 : 2 : 0] and q = [2 : −1 : 0 : 3] be the two points in P3. We

want to find the equation of the line passing through p and q.

Consider a point [x0 : x1 : x2 : x3] that belongs to the line passing through p and q. Take

B =


1 −1 2 0

2 −1 0 3

x0 x1 x2 x3


Like before, imposing the condition that rank(B) = 2

⇐⇒ detB = 0

That is,

det


1 −1 2

2 −1 0

x0 x1 x2

= 0⇒ 2x0 +4x1 + x2 = 0

and

det


1 −1 0

2 −1 3

x0 x1 x3

= 0⇒−3x0−3x1 + x3 = 0

Thus,

 2x0 +4x1 + x2 = 0

−3x0−3x1 + x3 = 0

11



is the required equation of line passing through p and q in P(V )3.

Now we can generalize it to the case of finding the equation of a line passing through

two points p and q in Pn. As in P2, the equation of the line passing through two points is

given by 1 linear equation and in P3 it is given by 2 linear equations, so in general for Pn,

equation of the line passing through two points is given by n−1 equations.

Example 2.4. Let P(V ) be an n+1 dimensional vector space and let w1 and w2 be distinct

linear subspaces of V . Let Li = P(wi) be the projectivization of wi. We want to show that

the following formula holds:

dim(L1 +L2) = dimL1 +dimL2−dim(L1∩L2)

Let w1 and w2 be distinct linear subspaces of V and consider dim(w1) = r+1, dim(w2) =

m+1 that is dim(L1) = r, dim(L2) = m and dim(L1∩L2) = p.

Notice that

p≤ min(r,m)

We need to show that

dim(L1 +L2) = r+m− p

Fix the basis B = {v1, . . . ,vp} for L1∩L2. By the theorem of completion of basis in linear

algebra, we can find (r− p) vectors w1, . . . ,wr−p such that

B1 = {v1, . . . ,vp,w1, . . . ,wr−p}

is a basis for L1. Similarly, we can find (m− p) vectors z1, . . . ,zm−p such that

B2 = {v1, . . . ,vp,z1, . . . ,zm−p}

is a basis for L2. Then, notice that
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L1 +L2 = Span(v1, . . . ,vp,w1, . . . ,wr−p,v1, . . . ,vp,z1, . . . ,zm−p)

= Span(v1, . . . ,vp,w1, . . . ,wr−p,0, . . .0,z1, . . . ,zm−p)

= Span(v1, . . . ,vp,w1, . . . ,wr−p,z1, . . . ,zm−p)

Therefore, it remains shown that

v1, . . . ,vp,w1, . . . ,wr−p,z1, . . . ,zm−p

are linearly independent. Consider then the general equation,

p

∑
i=1

λivi +
r−p

∑
j=1

µ jw j +
m−p

∑
k=1

ηkzk = 0 (2.2.1)

and notice that this implies

p

∑
i=1

λivi +
r−p

∑
j=1

µ jw j =−
m−p

∑
k=1

ηkzk

=⇒−
m−p

∑
k=1

ηkzk ∈ L1∩L2

Therefore, ∃α1, . . . ,αp ∈K such that

−
m−p

∑
k=1

ηkzk =
p

∑
q=1

αqvq

=⇒
p

∑
q=1

αqvq +
m−p

∑
k=1

ηkzk = 0

=⇒ α1 = · · ·= αp = v1 = · · ·= vm−p = 0

Going back to (2.2.1), we obtain

p

∑
i=1

λivi +
r−p

∑
j=1

µ jw j +0 = 0

13



=⇒ λ1 = · · ·= λp = µ1 = · · ·= µr−p = 0

Thus;

dim(L1 +L2) = r+m− p So, it proved that

dim(L1 +L2) = dimL1 +dimL2−dim(L1∩L2).

Now, we will move towards another important concept of projective geometry which

is parameter space. But before defining parameter space, we have to define the algebraic

variety.

Definition 2.2.2. A geometrical object specified by a set of polynomial equations is an

algebraic variety over a field K. A set of points in some affine or projective space that

satisfy a number of polynomial equations are what it is more officially known as.

An affine algebraic variety is a set of points in the affine space that satisfy a set of

polynomial equations. These equations are functions on the affine space, so the variety

consists of all points in the affine space where these functions are zero.

Similarly, a projective algebraic variety is a set of points in the projective space that sat-

isfy a set of homogeneous polynomial equations. These equations are polynomials where

all the monomials have the same degree. Therefore, the projective variety consists of all

points in the projective space where these polynomials are zero.

Example 2.5. Lines and conics in P2 are examples of a projective variety. A linear homo-

geneous equation of the type ax0+bx1+cx2 = 0, where a, b, and c are coefficients, can be

used to describe a line in mathbbP2. Any point that fits this equation, [x0 : x1 : x2], is on the

line.

Contrarily, conics are curves in the MathbbP2 space that are defined by homogeneous

quadratic equations. Circles, ellipses, parabolas, and hyperbolas are examples of conics. A

conic equation has the generic form ax02+bx12+cx22+dx0x1+ex0x2+ f x1x2 = 0, where

a, b, c, d, e, and f are coefficients.

14



Definition 2.2.3. Given a collection C of algebraic varieties, a parameter space for all

objects in C is an algebraic variety whose points are in 1-1 correspondence with elements

of C .

Remark 1. Projective space is itself an example of parameter space. In projective space,

each point represents a line passing through the origin. The coordinates of a point in pro-

jective space can be seen as parameters that define the direction of the corresponding line.

Thus, projective space serves as a parameter space for lines passing through the origin in

the underlying vector space.

2.3 Projective Transformations

Now, we shall define another important concept of projective geometry i.e. projective

transformations.

Definition 2.3.1. The term Projective transformation from projective space P(V ) to pro-

jective space P(W ) where V and W are the vector space, is the map f , defined by a linear

transformation whose inverse exists, ψ from V to W that is Ψ : V →W such that

f ([v]) = [ψ(v)] ∀ v ∈V/{0}

If Ψ is a linear transformation inducing f , the set of linear transformations from V to

W inducing f coincides with family of set {cΨ | c ∈K∗} That is,

The linear transformation which induces projective transformation is determined only

upto non-zero scaler multiplication

[(c f )(v)] = [c( f (v))] = [ f (v)]

Example 2.6. Let us investigate the possibility of a projective transformation.

w : P3→ P3 such that

w(L1) = L2 and w(M1) = M2
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in the following 2 cases:

Case: 1
L1 = {x0 = x1 = 0} ,L2 = {x0 = x2 = 0} and

M1 = {x2 = x3 = 0} ,M2 = {x0 + x1 = 5x2 + x1− x0 = 0}

Since

L1∩M1 = φ

and

L2∩M2 = {[0 : 0 : 0 : 1]}

Suppose on the contrary that there exists such projective transformation w. Since w is

invertible, So

L1∩M1 = φ

Since the map is injective, so it implies that;

w(L1)∩w(M1) = φ

But

w(L1) = L2 and w(M1) = M2

and we have seen that

L2∩M2 ̸= φ
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This is a contradiction, So, such w cannot exist.

Case 2:

L1 = {x0 = x1 = 0} ; L2 = {x0 = x2 = 0} and

M1 = {x2 = x3 = 0} and M2 = {x0 + x1 = 2x2 + x1− x3 = 0}

Here, we noticed that

L1∩M1 = φ

L2∩M2 = φ

So, there are chances that projective transformation may exist. To find that, consider.

L1 =
{
[0 : 0 : s : t] ∈ P3 | s, t ∈ R/{0},s = 0 or t = 0

}
L2 =

{
[0 : s : 0 : t] ∈ P3}

M1 =
{
[s : t : 0 : 0] ∈ P3}

M2 =
{
[s :−s : t : 2t− s] ∈ P3}

Since

L1∩L2 = {[0;0;0 : 1]}

and

w(L1) = L2

take as simpler case
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w([0 : 0 : 0 : 1]) = [0 : 0 : 0 : 1]

By its matrix of transformation, we will get,


a11 a12 a13 0

a21 a22 a23 0

a31 a32 a32 0

a41 a42 a43 1




0

0

0

1

=


0

0

0

1


and let take another simpler point

[0 : 0 : 1 : 0] maps on [0 : 1 : 0 : 0] That is


a11 a12 0 0

a21 a22 1 0

a31 a32 0 0

a41 a42 0 1




0

0

1

0

=


0

1

0

0


Now, to find remaining the first two columns of the matrix of transformation, we will use

w(M1) = M2 Since,

M1∩M2 = φ

take a simpler point on M1, that is

[0 : 1 : 0.0], that maps on [0 : 0 : 1 : 2] and
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
a11 0 0 0

a21 0 1 0

a31 1 0 0

a41 2 0 1




0

1

0

0

=


0

0

1

2


and similarly for the remaining column.

Thus; for any general point [x0 : x1 : x2 : x3] from L1 or M1, we have


1 0 0 0

−1 0 1 0

0 1 0 0

−1 2 0 1




x0

x1

x2

x3

=


x0

−x0 + x2

x1

−x0 +2x1 + x3


i.e

w([x0 : x1 : x2 : x3]) = [x0 :−x0 + x2 : x1 :−x0 +2x1 + x3]

is the required projective transformation.

Definition 2.3.2. If n+1 points in an n-dimensional projective space P(V ) have represen-

tative vectors in V that are linearly independent, then it is possible to add a new point to the

space such that the resulting set of n+2 points are said to be in general position.

Example 2.7. Consider the points in P3
R
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p1 = [1 : 0 : 1 : 2]

p2 = [0 : 1 : 1 : 1]

p3 = [2 : 1 : 2 : 2]

p4 = [1 : 1 : 2 : 3]

We will examine whether the points are in general position or not.

Since

det


1 0 1 2

0 1 1 1

2 1 2 2

1 1 2 3

= 0

Since the determinant of the matrix is zero, so by the knowledge of basic linear algebra,

means that the vectors are linearly dependent. So, these points are not in general position

in P3
R.

Theorem 2.3.1. Let R and S are the vector spaces and consider p1, . . . , pn+2 and q1, . . . ,qn+2

be two (n+2)- tuple of points which are in general position in P(R) and P(S) respectively,

then there is exist a projective transformation f : P(R)→ P(S) that is unique, such that

f
(

p j
)
= q j , 1 ⩽ j ⩽ n+2

[1][Theorem 3 from notes of 3rd chapter of Nigel Hitchin].

2.4 Dual Projective Space and Duality

Definition 2.4.1. Let V be a vector space and V ∗ be its dual space.Then dual projective

space refers to the projective space P(V ∗), also denoted by P(V )∗.

Since dimV = dimV ∗, So, if dimV = n+ 1 then P(V ∗) has dimension n. From linear

algebra, as we know that V and V ∗ are linearly isomorphic to each other, therefore, P(V ∗)
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is projectively isomorphic to P(V ).

Here being isomorphic means the map between them is linear and bijective.

Proposition 2.3. There is a natural one-to-one correspondence between the points of the

dual projective space P(V ∗) and the hyperplanes in the projectivization of vector space

Vi.e. P(V ). [1]

i.e naturally, a point [ f ] in P(V ∗) defines a linear vector subspace P(R) of P(V ) and a

vector space R inside V with dimension one less than that of V .

The general idea of the proof of this proposition (2.3) is that; to establish the one-to-one

correspondence between the points of the dual projective space P(V ∗) and the hyperplanes

in the projectivization of vector space Vi.e. P(V ), The idea of annihilators can be used.

Given a hyperplane H in P(V ), we can associate it with the annihilator of H in V ∗, denoted

as H0. The annihilator consists of all linear functionals in V ∗ that vanish on every point of

H. By definition, H0 is a subspace of V ∗.

Conversely, for any subspace W ∗ in V ∗, we can associate it with the hyperplane W in

P(V ), where W is the set of all points in V that are annihilated by every linear functional in

W ∗. Again, by definition, W is a hyperplane in P(V ).

Remark 2. We can deduce from the aforementioned statement that the dual projective

space functions as a parameter space for hyperplanes. We defined a hyperplane in P(V )

as the collection of solutions to homogeneous linear equations. A point corresponds to a

hyperplane in the dual projective space P(V ∗), on the other hand. We can connect each

hyperplane in P(V ) with a point in P(V ∗) using this correspondence, and vice versa.

As a result, it is possible to think of the dual projective space P(V ∗) as a parameter space

for the hyperplanes in the projective space P(V ). By changing the point in P(V ∗), we

can explore several hyperplanes in P(V ). Each point in P(V ) represents a particular hy-

perplane. This connection illustrates the dual projective space’s function as a natural

parameter.

Proposition 2.4. A linear subspace P(R) of dimension p in the dual projective space P(V ∗)

of dimension n consists of the hyperplanes in P(V ) that intersect with a fixed linear sub-
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space P(S) of dimension n− p−1 in P(V ).

For the proof, see [1][Proposition 8 from notes of 1st chapter of Nigel Hitchin]

Now, we will discuss some examples related to duality. But before this, we will define

the “duality correspondence.”

2.4.1 Duality Correspondence

Consider a projectivization of V P(V ) and its m dimensional subspace S = P(U). The

annihilator Ann(U) consists of all linear functionals f in the dual space V ∗ such that f

applied to every element of U is equal to zero. Ann(U) is a linear subspace of V ∗ and has

a dimension of n−m, where n is the dimension of V .

Now, we will define the duality correspondence map φ . This map takes subspaces

of dimension m in P(V ) as input and maps them to subspaces of dimension n−m− 1

in P(V ∗) as output. Specifically, it associates the subspace S = P(U) with the subspace

P(Ann(U)). The duality correspondence map φ is a bijection, meaning it establishes a

one-to-one correspondence between the subspaces in the domain and target.

Moreover, the duality correspondence map has some key properties. First, it reverses

inclusions, which means if one subspace is contained within another in P(V ), their cor-

responding subspaces in P(V ∗) have their inclusion order reversed. Second, the map φ

preserves the intersection of subspaces. That is, the intersection of two subspaces S1 and

S2 in P(V ) corresponds to the direct sum of their corresponding subspaces φ(S1) and φ(S2)

in P(V ∗).

Example 2.8. Let us find the dual of linear space

L = {x0− x1 = 0,x2−2x4 = 0} ∈ P4

then we want to show that for any p ∈ P4\L, ∃ a unique hyperplane of P4 that one

contains L and passes through p. In the end, we will find the equation for one passing

through p = [1 : 2 : 1 : 3 : 0].
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To find the dual of the linear space in P4

L =

 x0− x1 = 0

x2−2x4 = 0

L is a plane in P4. The dimension of the dual of L i.e. L∗ is

dimL∗ = 4−1−2 = 1

To find this L∗, see that

Thus, dual of L i.e is the point corresponding to hyperplane that contains L (since the duality

correspondence is inclusion reversing) i.e.

L∗ = {[H] = p ∈ (P4)∗| H hyperplane in P4 such that L⊆ H}

such that we have to find p and q

L∗ =< p,q >

where p = [1 :−1 : 0 : 0 : 0] and q = [0 : 0 : 1 : 0 :−2]

To find this line L∗, consider a point y = [y0 : y1 : y2 : y3 : y4] belong to line passing through

p and q.

Consider

A =


1 −1 0 0 0

0 0 1 0 −2

y0 y1 y2 y3 y4


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We want to impose that rank(A) = 2

⇐⇒ detA = 0

That is,

det


1 −1 0

0 0 1

y0 y1 y2

= 0⇒ y0 + y1 = 0

det


−1 0 0

0 1 0

y1 y2 y3

= 0⇒ y3 = 0

and

det


−1 0 0

0 0 −2

y1 y2 y4

= 0⇒ 2y2 + y4 = 0

Thus,

L∗ =


y0 + y1 = 0

y3 = 0

2y2 + y4 = 0

is the required equation of line L∗. Now, for the second part of the example, for our conve-

nience firstly we will translate the statement into dual i.e.“∀p ∈ P4\L where p = [1 : 2 : 1 :

3 : 0] ∃ a unique hyperplane of P4 that contains L and passes through p”

The dual statement of the above statement is:

“For any hyperplane P∗ = {y0 +2y1 + y2 +3y3} such that L∗ ̸⊂ P∗, show that ∃ unique

point q′ such that q′ ∈ L∗ and q′ ∈ P∗↔ L∗∩P∗ = {q′}”

i.e. we want to show that L∗∩P∗ ̸= φ and dim(L∗∩P∗) = 0. To show this, using the Grass-

manian formula:
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1≥ dim(L∗∩P∗)≥ dimP∗+dimL∗−dim(P4)

= 3+1−4 = 0

i.e

1≥ dim(L∗∩P∗)≥ 0

It means that for sure, L∗∩P∗ ̸= φ and if dim(L∗∩P∗) = 1

⇒ L∗ ⊆ P∗ which contradicts the assumption that L∗ ̸⊂ P∗. Thus,

dim(L∗∩P∗) = 0

i.e L∗ and P∗ intersect in a unique point q′.

To find this q, we will solve;

L∗∩P∗ =



y0 + y1 = 0

y3 = 0

2y2 + y4 = 0

y0 +2y1 + y2 +3y3 = 0

Solving this we see that

y3 = 0

y0 =−y1

y1 =−y2 and y4 = 2y1

i.e if y0 = 1⇒ y1 =−1 and y4 =−2

i.e

q′ = [1 :−1 : 1 : 0 :−2]

Thus, the required equation of hyperplane corresponding to this q′ is

{x0− x1 + x2−2x4 = 0}
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For the third part of the exercise, i.e to find the equation for one passing through

P = [1,2,1,3,0]

i.e It is simply;

P∗ = {y0 +2y1 + y2 +3y3 = 0}

Example 2.9. we want to find the dual statement to

“Given any two points in P2, ∃ a unique line passing through them”

So,

Its dual statement is

“Given two points on a line in P2, we obtain by duality; two concurrent lines”

that is:

Figure 2.1: Two Points in P2 Two Concurrent Lines

Indeed, take into account the two points A and B in P2. Each point in the dual projective

space, indicated by the symbols A∗ and B∗, corresponds to a line. The lines A∗ and B∗ in

the dual projective space that corresponds to the separate points A and B are also distinct.

Let’s now think about the point where A∗ and B∗ connect. A common point must be found

where the separate lines A∗ and B∗ intersect because they are not parallel. A point in the

projective space P2 corresponds to this common point of intersection. This point will be

designated as C. As a result, we have demonstrated that the lines that correspond to A and

B in the dual projective space become concurrent at point C in P2.
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Chapter 3

Quadrics and Conics
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The projective geometry of quadrics is the geometric representation of linear algebra

that deals with symmetric bilinear forms. We recall:

3.1 Quadratic Forms

Definition 3.1.1. Let V be an (n+1)-dimensional vector space over a field K. A Symmet-

ric bilinear form on V is a map B : V ×V →K such that:

• B(v,w) = B(w,v) i.e B is symmetric.

• B(λ1v1 +λ2v2,w) = λ1B(v1,w)+λ2B(v2,w) i.e B is linear.

This form is non-degenerate if for all v2 ̸= 0 the form B(v1,v2) = 0 gives that v1 = 0

for all v1,v2 ∈V.

If we pick a basis for V i.e B= {v0,vq, . . . ,vn}, then v=
n

∑
i=0

xivi and w=
n

∑
j=0

y jv j, we have that

B = (v,w) = v =
n

∑
i, j=0

B(vi,v j)xiy j

that is B is uniquely determined by the symmetric matrix

matBB := [Bi j] = [B(vi,v j)]

Remark 3. The symmetric bilinear form can be added and multiplied by a scaler, that is;

(B1 +B2)(v,w) = B1(v,w)+B2(v,w)

(µB)(v,w) = µB(v,w)

Thus, it creates a vector space which is equivalent to the space of n×n symmetric matrices.
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Definition 3.1.2. Let g =< ., . > be a scaler product on V . By Quadratic form determined

by g mean a map Q : V →K such that :

Q(v) = g(v,v) =< v,v >

The quadratic form associated with the symmetric bilinear form determines it com-

pletely i.e

Q(v) = B(v,v)

with specifying the condition that charK ̸= 2.

Indeed, as

Q(u+ v) = B(u+ v,u+ v)

= 2B(u,v)+B(u,u)+B(v,v)

= 2B(u,v)+Q(u)+Q(v)

=⇒ B(u,v) =
1
2
(Q(u+ v)−Q(u)−Q(v))

Therefore, the quadratic form associated with the symmetric bilinear form can be used to

uniquely identify it, where charK ̸= 2.

Theorem 3.1.1. (Sylvester’s Theorem) Let F be a field and V be a vector space of dimen-

sion m over the field F. Consider that B be a quadratic form on V , then

• If F= C, there exist basis such that if v = ∑i zivi

B(v,v) =
n

∑
i=1

zi
2

where n is the rank of B.(that diagonal matrix associated to quadratic form)

• If F= R, there exist basis such that

B(v,v) =
g

∑
i=1

zi
2−

h

∑
i= j

z j
2
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If B is non-degenrate then m = n = g+ h = rankB. [1][Theorem 10 from notes of 1st

chapter of Nigel Hitchin]

Here, (g,h), which is the number of positive term and negative term sequences, is called

the signature.

Example 3.1. Consider the quadratic form in R3 having basis {v1.v2,v3} such that

v =
3

∑
i=1

xivi

Q(v) = x1x2 + x2x3 + x3x1

Thanks to a change of coordinates, we put y1 = (x1 + x2)/2, y2 = (x1− x2)/2 to get

Q(v) = y2
1− y2

2 + x3(2y1)

Completing the square, we get

Q(v) = (y1 + x3)
2− y2

2− x2
3

so that z1 = y1 + x3, z2 = y2 and z3 = x3

=⇒ Q(v) = z2
1− z2

2− z2
3

here, signature is g = 1, h = 2 and rank is g+h = m = 3.

3.2 The Conics and Quadrics

Definition 3.2.1. In a projective space, a quadric connected to B, for a quadratic form Q,

i.e.

QB = {[u] ∈ P(U)|B(u,u) = Q(u) = 0}

is the set of the points p = [u] in P(U) that fulfil the equation Q(u) = 0.

When B is not degenerate, the above-defined quadric is not singular. The quadric has
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the dimension dimP(V )-1.

The quadric is non singular if B is non degenrate. The dimension of the quadric is

dimP(V )-1.

Definition 3.2.2. A quadric in P2 (quadric of dimension 1) is called a conic.

A quadric in P2 with dimension 1 is known as a ”conic” quadric because of its relation-

ship to a cone in three-dimensional space.

When a cone is thought of in three dimensions, the intersection of the cone and a plane

can result in a variety of shapes known as conic sections. They consist of well-known

curves like parabolas, circles, ellipses, and hyperbolas. These conic sections in three-

dimensional space are extended to the projective plane P2 to form the concept of a conic

in projective geometry. The locus of points that satisfy a specific quadratic equation in

homogeneous coordinates is represented by a conic in P2.

Different conics are all equivalent in the projective space.[1][Example at page 26 of Hitchin

notes chapter 3]

Remark 2

• QB is well defined, since

B(λv,λv) = λ
2B(v,v)

• If we pick a basis for V i.e. {w0,w1, . . . ,wn} and fixing a system of homogeneous

coordinate [x0,x1, . . . ,xn] ∈ P4, we have

v =
n

∑
i=0

xiwi

then, Q(v) = B(v,v) = v = ∑i, j B(wi,w j)xix j

since A = [B(wi,w j)], so,

Q(v) = xtAx

Consequently, the quadric associated with B will become
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QB = {[xbmats : xn] = x ∈ P4|xtAx = 0}

Example 3.2. Let V be a 3-dimensional vector space over R having basis

B =

e0 =


1

0

0

 ,e1 =


0

1

0

 ,e2 =


0

0

1




and

A = [B(vi,v j)] =


1 1 0

1 2 0

0 0 0


Then the quadric associated to B will be:

QB =
{
[x0 : x1 : x2] ∈ P2 | xtAx = 0

}
=


[

x0 x1 x2

]
1 1 0

1 2 0

0 0 0




x0

x1

x2




=
{

x2
0 +2x0x1 +2x2

1 = 0
}

3.3 Quadrics in P1
C

Consider the complex projective line i.e. P1
C with the homogeneous coordinates [x0 : x1]

and quadratic form is given by

Q(x0,x1) = ax0
2 +bx0x1 + cx1

2

The quadric in P1
C is given by the geometric locus of {Q(x0,x1) = 0}.

To find this geometric locus, we have the following cases:

Case 1:
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If b = c = 0 i.e.

A =

1 0

0 0


then

{Q(x0,x1) = 0}= {x2
0 = 0}= {[0 : 1]}

that is, one point with multiplicity 2.

Case 2:

If b = 0 and c ̸= 0 i.e.

A =

1 0

0 1


then

{Q(x0,x1) = 0}= {x2
0 + x2

1 = 0}= {[0 : 1], [1 : 0]}

that is two distinct points.

So, to summarize, the quadrics in P1
C are either:

• One point with multiplicity 2 i.e. {x2
0 = 0} (rank 1)

• Two distinct points i.e. {x2
0 + x2

1 = 0} (rank 2, maximal rank)

3.3.1 Quadrics in P1
R

Similarly, in case of quadrics of P1
R, we have one more case i.e.

• {x2
0 = 0}

• {x2
0− x2

1 = 0}

• {x2
0 + x2

1 = 0}
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3.4 Quadrics in P2: Conics

A conic in P2 with homogeneous coordinates [x0 : x1 : x2] has generic equation:

{a0x2
0 +a1x2

1 +a2x2
2 +a3x0x1 +a4x0x2 +a5x1x2 = 0}

homogeneous polynomial of degree 2 in the variables x0,x1,x2.

We can write it as:

{Conics}←→ {[a0 : a1 : · · · : a5] ∈ P5}

That is: “P5 is a parameter space for C =all the conics in P2”

3.4.1 Projective Classification of Conics of P2
K

1. Projectively, each conic in P2
C corresponds to one conic from the following list:

• {x2
0 + x2

1 + x2
2 = 0} (rank 3, maximal rank)

• {x2
0 + x2

1 = 0} (rank 2)

• {x2
0 = 0} (rank 1)

This descends from the Sylvester theorem (3.1.1).

Indeed, due to the fact that it divides conics into groups according to their rank, which

is the dimension of the vector space spanned by the fundamental constituents of the

quadratic form.

The equation x2
0+x2

1+x2
2 = 0 denotes a conic of rank 3 in this instance. This indicates

that the corresponding quadratic form has a rank of 3 and is non-degenerate.

The corresponding quadratic form is degenerate and has a rank of 2 according to the

equation x2
0 + x2

1 = 0, which corresponds to a conic of rank 2.

Last but not least, the equation x2
0 = 0 denotes a conic of rank 1, indicating that the

corresponding quadratic form is extremely degenerate with a rank of 1.

Similarly,
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2. Projectively, each conic in P2
R corresponds to one conic from the following list:

• {x2
0 + x2

1 + x2
2 = 0}

• {x2
0 + x2

1− x2
2 = 0}

• {x2
0 + x2

1 = 0}

• {x2
0− x2

1 = 0}

• {x2
0 = 0}

[2][Theorem 1.8.2 form the book of Projective geometry by Fortuna, E., Frigerio, R.,

& Pardini, R.]

At the end of this chapter, we can discuss an example to understand how the parameter

space can help infer the properties of varieties.

Example 3.3. consider the example of finding a unique conic passing through five points in

a general position. In projective space, the condition of a conic passing through a point can

be reperesented as a hyperplane in P5. Each point corresponds to a hyperplane, and when

five points are in general position, their corresponding hyperplanes intersect at a unique

point.

Imagine that we are trying to locate a conic that passes through all five of our projective

space points. Each point has a corresponding hyperplane, which denotes the state of the

conic flowing over it. These five hyperplanes now come together at a single place when we

intersect them. The conic that crosses through all five points is symbolized by this special

point.

This example shows how we can deduce attributes of variety by using the parameter

space, in this case, the hyperplanes. We may ascertain the existence and uniqueness of

the required conic by looking at the intersection of these hyperplanes. We can examine and

analyze the conic’s attributes as it passes through the specified places using the hyperplanes

as parameters.
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Chapter 4

Exterior Algebra and the Klein Quadric
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In order to handle the space of all the lines in a projective space P(U), new notions must

now be introduced. Lines found in the spaces which have high dimensions behave differ-

ently from those in the projective plane, as we have seen duality is capable of handling. We

study the linear algebraic properties of the two-dimensional vector subspaces W ⊂U .

To guide our work, think about how we define a subspace of R3 which has dimension 2, in

Euclidean geometry. The vector cross product of two vectors in the space, u and w, which

do not depend on each other, that are linearly independent, could be described by utilising

its standard normal, n, having magnitude 1 and in parallel with u×w. Following are the

properties of vector product:

• v×w =−w× v

• (µ1v1 +µ2v2)×w = µ1v1×w+µ2v2×w

We will generalise these features to vectors in any vector space V ; nevertheless, the product

will not be a vector in V ; it will be a vector in another vector space.

Definition 4.0.1. A map B : V ×V → F is an alternating bilinear form on a vector space

V such that it satisfy the following:

• B(u,v) =−B(v,u)

• B(µ1u1 +µ2u2,v) = µ1B(u1,v)+µ2B(u2,v)

This represents the skew-symmetric version of a symmetric bilinear form that we used

to define the quadrics. The skew symmetric matrix B(vi,v j) determines B uniquely, given

a basis {v1, . . . ,vn}.To create a vector space that is isomorphic to the space of skew-

symmetric n×n matrices, the addition of alternating forms and the multiplication of scalars

are possible. This vector space is spanned by the basis elements E pq for p < q and has di-

mension n(n−1)/2.

4.1 Second Exterior Power

Definition 4.1.1. On a vector space U which has a finite dimension, the second external

power, represented by the symbol Λ2U , is the dual space of the above-defined alternating
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bilinear form’s vector space on U .

The elements of second exterior power are called 2-vectors or bivectors.

Using this space as our starting point, now, we can generalize the usual cross-product,

sometimes referred to as the external product or also known as the wedge product of given

two vectors.

Definition 4.1.2. Let v and w be elements of vector space V . The exterior product v∧w

∈ Λ2V is the linear map that assigns a value to F for an alternating bilinear form B, as

follows:

(v∧w)(B) = B(v,w)

4.1.1 Fundamental Properties of Exterior Product

• (v∧w)(B) = B(v,w) =−B(w,v) =−(w∧ v)(B) so that

w∧ v =−v∧w

• Specifically, v∧ v = 0 as by using above first property;

(v∧ v)(B) = B(v,v) =−B(v,v) = 0

• ((µ1v1 + µ2v2)∧w)(B) = B(µ1v1 + µ2v2,w) = µ1B(v1,w)+ µ2B(v2,w) which im-

plies

(µ1v1 +µ2v2)∧w = µ1v1∧w+µ2v2∧w.

• If {u1, ...,un} is a basis set for vector space V then the set of all possible products of

two elements from the set {u1, ...,un}, i.e. um ∧ un for m < n, forms a basis set for

the vector space of all 2-linear forms on V i.e. for Λ2V .

Proposition 4.1. For any non-zero vector v ∈ V , the exterior product of v and w is zero

if and only if w can be expressed as the scalar multiplication of v by some scalar µ i.e

w = µv.
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Proof. Consider the case if w = µv is given, then

v∧w = v∧ (µv) = µ(v∧ v) = µ(0) = 0

For the converse,

we will prove this part using a contrapositive statement. i.e if w ̸= µv which means that w

and v are linearly independent and so extendable to the basis of V so then v∧w is a basis

vector and therefore non zero.

We will focus on the elements of Λ2V expressed as v∧w. This is of particular interest

when considering a 2-dimensional vector subspace W ⊂V , where {v,w} forms a basis for

W . Any other basis can be represented as {pv+qw,rv+ sw}. We can derive the following,

by utilizing the properties v∧w = v∧w = 0.

(pv+qw)∧ (rv+ sw) = (ps−qr)v∧w

The matrix p q

r s


must be invertible i.e. ps− qr ̸= 0 because if it is not invertible i.e. ps− qr = o then the

above wedge product is zero and by proposition 4.1 the vectors are linearly dependent but

they cannot be, because they are basis elements.

As a consequence of the matrix being invertible, the 1-dimensional subspace of Λ2V , which

is spanned by v∧w and serves as a basis for W , is uniquely determined by W itself. This

determination remains consistent regardless of the chosen basis. Consequently, we can as-

sociate a point in P(Λ2V ) with each line in P(V ).

Now, we will generalize the concept of second exterior power and exterior product to

higher exterior powers and q−th exterior product respectively. Before generalizing this

concept, we will define alternating multilinear form as following:
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Definition 4.1.3. A map M : V × ·· ·×V → F is an alternating multilinear form which

has degree q on a given vector space V such that it satisfy the following:

• M(v1, . . . ,vi, . . . ,v j, . . . ,vq) =−M(v1, . . . ,v j, . . . ,vi, . . . ,vq)

• M(µ1v1 +µ2v2,w2, . . . ,wq) = µ1M(v1,w2, . . . ,wq)+µ2B(v2,w2, . . . ,wq)

4.2 Higher Exterior Powers

Definition 4.2.1. On a vector space V which has finite dimension, the q-th exterior power,

represented by ΛqV , is the dual space of the above-defined alternating multilinear form’s

vector space on the V.

The elements of second exterior power are called q-vectors.

Definition 4.2.2. Let v1,v2, . . . ,vq ∈ V . The exterior product v1 ∧ v2 ∧ ·· · ∧ vq ∈ ΛqV is

the linear map that assigns a value to F for an alternating multilinear form M, as follows:

(v1∧ v2∧·· ·∧ vq)(M) = M(v1,v2, . . . ,vq)

As we have stated the fundamental properties of exterior products, so also q-th exterior

power has:

• It demonstrates linearity with respect to each variable vi individually.

• Swapping two variables results in a change of sign for the exterior product.

• When two variables are the same, the above-defined exterior product equals zero.

Proposition 4.1 can be generalized in the following useful manner:

Proposition 4.2. The q vectors vi ∈V form an exterior product v1∧v2∧·· ·∧vq that equals

zero iff one vector can be written as a linear combination of the other vectors i.e. indepen-

dent vectors.
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Proof. Firstly, we will suppose that the vectors are linearly dependent and will show that

their exterior product vanishes. So, if the vectors are linearly dependent then for some

scaler µi ̸= 0 we can write them as

µ1v1 + · · ·+µqvq = 0

Then, by the property of linear dependence, vi can be written as

vi = ∑
i̸= j

η jv j

and so the exterior product will become

v1∧ v2∧·· ·∧ vq = v1∧ v2∧ (∑
i̸= j

η jv j)∧ vi+1 · · ·∧ vq

Expanding this expression using linearity, every term that contains a repeated variable v j

will vanish.

For the converse,

we will prove this part using a contrapositive statement. i.e. if v1, . . . ,vq are linearly inde-

pendent, they can be augmented to form a basis. Consequently, v1∧ v2∧ ...∧ vq becomes a

basis vector for ΛqV and therefore remains non-zero.

Basic characteristics of general exterior product

Let V be the vector space, v1,v2,v3 ∈ V and ΛpV and ΛqV be the p-th and q-th exterior

powers respectively. We have the following main properties:

• v1∧ (v2 + v3) = v1∧ v2 + v1∧ v3

• (v1∧ v2)∧ v3 = v1∧ (v2∧ v3)

• If v1 ∈ ΛpV and v2 ∈ ΛqV then v1∧ v2 = (−1)pqv2∧ v1

Example 4.1. Given the following a,b and v1,v2,v3,v4 ∈ V are linearly independent, we

will calculate the exterior product of a and b that is a∧b:
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• a = v1∧ v2 + v3∧ v1 ; b = v2∧ v3∧ v4

a∧b = (v1∧ v2 + v3∧ v1)∧ (v2∧ v3∧ v4)

= v1∧ v2∧ v2∧ v3∧ v4 + v3∧ v1∧ v2∧ v3∧ v4

= 0 (because of repeated factor vi)

• a = v1 + v2 + v3 ; b = v1∧ v2 + v2∧ v3 + v3∧ v1

a∧b = (v1 + v2 + v3)∧ (v1∧ v2 + v2∧ v3 + v3∧ v1)

= v1∧ v2∧ v3 + v2∧ v3∧ v1 + v3∧ v1∧ v2 (rest of terms became zero again by repeated vi)

= v1∧ v2∧ v3 + v1∧ v2∧ v3 + v1∧ v2∧ v3 (using properties of exterior product)

= 3v1∧ v2∧ v3

4.3 Decomposable 2-Vectors

Definition 4.3.1. An element in Λ2V is decomposable if it can be written as v∧w for

v,w ∈V.

A point in the projective space P(Λ2V ) is determined by a decomposable 2-vector p =

v∧w, where the line in P(V ) corresponds to that point.

To algebraically describe the decomposability, we can utilize the following theorem, which

precisely accomplishes this task.

Theorem 4.1. If we consider a non-zero element p ∈ Λ2V , it can be decomposed if and

only if p∧ p = 0 ∈ Λ4V.

Proof. Firstly, we will assume that p is decomposable and will prove that p∧ p = 0.

Since p is decomposable so p = x∧ y, where x and y are two vectors, the expression

p∧ p = x∧ y∧ x∧ y

equals zero due to the presence of the repeated factor x (or y). That is
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=⇒ p∧ p = 0.

To establish the converse, we utilize an inductive proof based on the dimension of V .

We begin by considering the cases where dimV = 0 or 1, which results in Λ2V = 0 and

p ∈ Λ2V but the p we are considering should be the non-zero element of p ∈ Λ2V . Thus,

we focus on the case where dimV = 2.

When dimV = 2, we have dimΛ2V = 1. If v1 and v2 form a basis for V , then v1∧v2 rep-

resents a non-zero element. Consequently, any p= v1∧v2 in this scenario is decomposable.

Now let’s focus specifically on the case where the dimension of V is 3. In this case,

given a non-zero element ”p” belonging to Λ2V , we can define a mapping P : V → Λ3V as

follows:

P(u) = p∧u

for u ∈ V and p ∈ Λ2V. Since the dimension of Λ3V is 1, so by rank-nullity theorem of

linear algebra, dim(KerP) ≥ 2, therefore, we can select two linearly independent vectors

v1 and v2 from the kernel and expand them to form a basis v1, v2, v3 for V . With this basis,

we can express the situation as follows:

p = µ1v2∧ v3 +µ2v3∧ v1 +µ3v1∧ v2. (4.3.1)

By definition, now p∧ p = 0, so we can take

0 = p∧ v1 = (µ1v2∧ v3 +µ2v3∧ v1 +µ3v1∧ v2)∧ v1

0 = µ1v2∧ v3∧ v1

0 = µ1
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Similarly,

0 = p∧ v2 = (µ1v2∧ v3 +µ2v3∧ v1 +µ3v1∧ v2)∧ v2

0 = µ2v3∧ v1∧ v2

0 = µ2

Consequently, it can be deduced that

p = µ3v1∧ v2

which can be decomposed.

Assume, based on the principle of induction, that the above-stated theorem is valid for

vector spaces having dimensions less than equal to n−1 dimensions and suppose that the

scenario where the dimension of dimV = n. By utilizing the basis u1, . . . ,un of V , we can

express p in the following manner:

p =
n

∑
1≤i≤ j

pi jui∧u j

= (
n−1

∑
i=1

pinui)∧un +
n−1

∑
1≤i≤ j

pi jui∧u j

= v∧un + p′ (4.3.2)

where v∈U , p′ ∈Λ2U for U be n−1 dimensional space which is spanned by u1, . . . ,un−1.

Now, by using the given condition;

0 = p∧ p = (v∧un + p′)∧ (v∧un + p′) = 2v∧ p′∧un + p′∧ p′

However, un does not appear in the expansion of v∧ p′ or p′∧ p′. As a result, we obtain the

following separately:

v∧ p′ = 0 (4.3.3)

44



and

p′∧ p′ = 0

By the inductive step, p′∧ p′ = 0 implies that p′ is decomposable that is p′ = v1∧ v2. Put

this value of p′ in equation (4.3.3),

v∧ v1∧ v2 = 0

By proposition 4.2. above equation implies that

µv+λ1v1 +λ2v2 = 0 (4.3.4)

Now we have two cases

Case-1 (if µ = 0):

Then equation (4.3.4) implies that v1 and v2 are linearly dependent so by proposition 4.1.

p′ = v1∧ v2 = 0. Putting back this value of p′ in (4.3.2), we get

p = v∧un

So, p is decomposable in this case.

Case-2 (if µ ̸= 0):

Then equation (4.3.4) implies that v = µ1v1 +µ2v2. So, by (4.3.2);

p = (µ1v1 +µ2v2)∧un +P′

= (µ1v1 +µ2v2)∧un + v1∧ v2

= µ1v1∧un +µ2v2∧un + v1∧ v2

and as demonstrated earlier, this represents the three-dimensional scenario, which is always

decomposable.

Therefore, we can deduce that p is decomposable in every case.

Example 4.2. Given the following 2-vectors, with the help of the above theorem, we will
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check which of them is decomposable:

• a = v1∧ v2 + v2∧ v3 + v3∧ v4

a∧a = (v1∧ v2 + v2∧ v3 + v3∧ v4)∧ (v1∧ v2 + v2∧ v3 + v3∧ v4)

= v1∧ v2∧ v3∧ v4 + v1∧ v2∧ v3∧ v4

= 2v1∧ v2∧ v3∧ v4

̸= 0

Since, a∧a ̸= 0, so by theorem (4.1), a is not decomposable.

• b = v1∧ v2 + v2∧ v3 + v3∧ v4 + v4∧ v1

b∧b = (v1∧ v2 + v2∧ v3 + v3∧ v4 + v4∧ v1)∧ (v1∧ v2 + v2∧ v3 + v3∧ v4 + v4∧ v1)

= v1∧ v2∧ v3∧ v4− v1∧ v2∧ v3∧ v4 + v1∧ v2∧ v3∧ v4− v1∧ v2∧ v3∧ v4

= 0

Since, b∧b = 0, so by theorem (4.1), b is decomposable.

4.4 Motivation: the Importance of the Klein Quadric

The dual projective plane, which acts as a parameter space for lines in P2 (two-dimensional

projective space), is where the concept of parametrizing lines in projective space first

emerges. In other words, if we consider a line in P2, it is parameterized by a point in

the dual projective plane (P2)∗. However, the dual projective plane is no longer suffi-

cient to parametrize lines when we move to a higher-dimensional space, notably P3 (three-

dimensional projective space). We need to propose the Klein quadric as an alternative. We

can easily define and parameterize lines in mathbbP3 using the Klein quadric.

This urge to comprehend and categorize geometric objects, particularly lines, in three-

dimensional projective space is the driving force behind the Klein quadric. These lines are

represented geometrically by the Klein quadric, which enables a better comprehension of
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their characteristics.

The motivation is related to the decomposable 2-vectors in the preceding theorem (4.1),

which provides context. An element of the exterior algebra Λ2V , where V is a vector

space, is a decomposable 2-vector. The wedge product of two vectors v∧w, where v and w

are components of V , can be used to express it. The quadric equation a∧a = 0 holds true

for any decomposable 2-vector, according to the theorem.

This theorem explains how quadric equations and 2-vectors are related. One way to think

of the quadratic form awedgea = 0 is as a geometric requirement that defines a quadric. It

depicts a group of projective space points that are solutions to this quadratic equation.

One particular quadric that results from this link is the Klein quadric. The Klein quadric is

actually a quadric in the projectivization of Λ2V , or P(Λ2V ), where Λ2V is the same as the

exterior algebra of the provided vector space V as previously stated. The locus of points

in P(Λ2V ) that fulfil the quadratic equation a∧ a = 0, where a denotes a decomposable

2-vector, is known as the Klein quadric.

4.5 The Klein Quadric

The Klein quadric arises as a natural construction when studying lines in three-dimensional

projective space, P3(V ), where V is a four-dimensional vector space. By considering the

exterior algebra Λ2V , which has dimension one in this case, we can represent projective

lines as decomposable 2-vectors, such as a = x∧ y, where x and y are vectors in V .

For any generic element a ∈ Λ2V , we write

a = µ1v0∧ v1 +µ2v0∧ v2 +µ3v0∧ v3 +η1v2∧ v3 +η2v1∧ v3 +η3v1∧ v2
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and then we apply the theorem if we want to characterise the decomposable one;

a∧a = (µ1v0∧ v1 +µ2v0∧ v2 +µ3v0∧ v3 +η1v2∧ v3 +η2v1∧ v3 +η3v1∧ v2)∧

(µ1v0∧ v1 +µ2v0∧ v2 +µ3v0∧ v3 +η1v2∧ v3 +η2v1∧ v3 +η3v1∧ v2)

= µ1η1(v0∧ v1∧ v2∧ v3)+µ2η2(v0∧ v2∧ v1∧ v3)+µ3η3(v0∧ v3∧ v1∧ v2)+

µ1η1(v2∧ v3∧ v0∧ v1)+µ2η2(v1∧ v3∧ v0∧ v2)+µ3η3(v1∧ v2∧ v0∧ v3)

= 2(µ1η1−µ2η2 +µ3η3)v0∧ v1∧ v2∧ v3

= B(a,a)v0∧ v1∧ v2∧ v3 (4.5.1)

where

B(a,a) = 2(µ1η1−µ2η2 +µ3η3) (4.5.2)

Since a is decomposable, so B(a,a) is a quadratic form which is non-degenerate and there-

fore, by the above theorem, a quadric which is non-singular is defined by B(a,a) = 0,

denoted as Q, in the projective space P(Λ2V ) that is Q ⊂ P(Λ2V ). The quadric Q is well-

defined, independent of the choice of basis, and serves as a geometric object parametrizing

the projective lines in P(V ).

Felix Klein, motivated by his supervisor’s work named Julius Plücker, provided a com-

prehensive description of this concept. As a result, the quadric Q is commonly referred to

as the notion of our main topic, the Klein quadric. The (4.5.2) equation, of the described

quadric, illustrates that it contains linear subspaces of maximum dimension 2, regardless

of the field considered.

In short, since Q⊂ P(Λ2V ) which is isomorphic to P5, so Q, the Klein quadric is actually

the solution of quadratic equation in a 5-dimensional projective space P5.

Now, we will move toward one of the main properties of the Klein quadric that is;

Proposition 4.3. There exists a one-to-one correspondence between lines L in a 3-dimensional
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projective space P(V ) and points P in the 4-dimensional quadric Q⊂ P(Λ2V ).

Proof. To prove the correspondence between points inside the quadric Q subset of P(Λ2V )

of dimension 4 and lines inside in a projective space of vector space V i.e. P(V ) of dimen-

sion three, we can use the concept of decomposable 2-vectors.

Let’s start with a line L in P(V ). By Theorem (4.1), we know that every line can be repre-

sented by a decomposable 2-vector. So, we can write the line L as L = x∧ y, where x and

y are vectors in V . Now, consider the point P = (x∧ y)∧ (x∧ y) in Q. This point P lies on

the quadric Q because the wedge product of a decomposable 2-vector with itself is always

zero. In other words, (x∧ y)∧ (x∧ y) = 0. So, the line L in P(V ) corresponds a point P in

Q⊂ P(Λ2V ).

For the converse part, it is proven straightforward by the statement of theorem (4.1), which

says that there is a decomposable 2-vector that is used to represent each point on the Klein

quadric Q.

So, it is proved the correspondence between points inside the quadric Q subset of P(Λ2V )

of dimension four and lines inside in a projective space of vector space V of dimension

three.

Now, we have a few more properties of the Klein quadric in the form of the following

propositions:

Proposition 4.4. Two lines L1 and L2 intersect in the projective space of vector space V iff

the line that connects their respective points P1 and P2 in the Klein quadric Q lies entirely

within Q.

Proof. Let W1 and W2 be the two-dimensional subspaces of V defined by the lines L1 and

L2, respectively. Suppose the lines intersect at a point K, represented by the vector v ∈ V .

We can extend v to bases {v,v1} for W1 and {v,v2} for W2. The line in P(Λ2V ) joining P1

and P2 corresponds to the subspace spanned by v∧ v1 and v∧ v2.

Any 2-vector in this subspace can be written as

µ1v∧ v1 +µ2v∧ v2 = v∧ (µ1v1 +µ2v2)

49



which is a decomposable 2-vector and symbolizes a point in Q.

On the other hand, if the taken lines L1 and L2 do not meet, then their intersection

W1 ∩W2 = 0 that is the zero subspace, indicating that V = W1⊕W2. In this case, we can

choose bases {v1,u1} for W1 and {v2,u2} for W2. Then {v1,u1,v2,u2} is a basis of V .

The 4-vector v1∧u1∧ v2∧u2 is non-zero since it corresponds to a nonzero element in the

exterior algebra Λ4V , where V is 4-dimensional.

A point on the line joining P1 and P2 is represented by a 2-vector

a = µ1v1∧u1 +µ2v2∧u2

Computing a∧a,

a∧a = 2µ1µ2v1∧u1∧ v2∧u2

we find that it vanishes only if µ1 or µ2 is zero, which cannot be. Thus, the line only

intersects the Klein quadric Q at the points P1 and P2.

Therefore, we conclude that the two lines L1 and L2 intersect in the projective space

P(V ) iff the line that connects their respective points P1 and P2 in the Klein quadric Q lies

entirely within Q.

Proposition 4.5. Given a fixed point X in projective space, the collection of lines L passing

through X corresponds to the set of points P in the Klein quadric that lies on a fixed plane

contained within the quadric

[1][Proposition 20 from 3rd chapter of Nigel Hitchin]

Remark 4. Within the domain of algebraic geometry, there exists another natural example

of a parameter space known as “Grassmannians.” A Grassmannian denoted as G(k,n),

is defined as the collection of all k-dimensional vector subspaces within an n-dimensional

vector space. One can use the idea of Plücker embedding to offer a concrete representation

of the Grassmannian as an algebraic variety. Each point in the Grassmannian is mapped

to a point in projective space by this embedding. The Klein quadric, precisely G(1,3), is a

prime example of a Grassmannian. It captures the parameterization of the projective lines

in a projective space of dimension 3. The geometry of lines can be understood by relating
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each line to a point on the Klein quadric and by using Grassmannian’s algebraic structure.

The relationship between Grassmannians and the Klein quadric demonstrates how closely

geometry and algebraic varieties are related. It emphasizes how research into parameter

spaces and their embeddings can shed light on projective spaces’ geometric features and

structures.

[4][Lecture 6 of Joe Harris book of algebraic geometry]
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