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ABSTRACT 

 

The term used to illustrate a molecule/chemical compound in the form of graph is known as 

molecular/chemical graph. Molecules are usually represented as vertices while their bonding interaction is 

shown by edges in a molecular graph. In this thesis, we computed various connectivity indices based on 

degrees of vertices of chemical graph of Terbium Dioxide (Tb𝑂2) and Graphitic Carbon Nitride (g-𝐶3𝑁4) 

including general Randic, ABC, GA and Zagreb indices etc. Afterwards, we found the physical measures like 

entropy and heat of formation of Tb𝑂2 and g-𝐶3𝑁4. Then, we fitted curves between different indices and the 

thermodynamical properties namely heat of formation and entropy. Curve fitting was done in MATLAB 

through different methods based on linearity and non-linearity. The performance of the method was tested 

using  root mean squared error (RMSE), the sum of squared errors (SSE) or R2. Further, we gave graphical 

representations of these indices. These mathematical frameworks might provide a way to study the ther- 

modynamics properties of the chemical structure of Terbium Dioxide (Tb𝑂2) at intense level which will 

assist to comprehend the relationship between system dimension and these measures. This thesis is divided 

into five chapters.  Chapter 1 includes the basic definition , notions and terminologies related to thesis. 

Chapter 2 provides a review of  literature about out work .The main results are given in chapter 3 .Chapter 4 

contains a brief discussion about the work while the chapter 5 consists of the references used in this thesis. 
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1 Introduction

1.1 Graph Theory

The study of graphs, which are mathematical structures used to model pairwise relationships

between things, is known as graph theory in mathematics. A graph is made up of vertices (also

known as nodes) that are connected by edges (also called lines). Undirected graphs, in which

edges might connect two vertices symmetrically, are distinguished from directed graphs, in which

edges connect two vertices asymmetrically. Graphs are one of the most studied objects in discrete

mathematics.

Graph theory has different implementations in many science fields including chemistry. Graph

theoretical techniques provide the idea to study the molecular structures of chemical compounds

at enormous level. These methods assist to understand the physical measures like entropy, en-

thalpy or heat of formation of chemical compounds as well as to approach the basic characteristics

which necessitate the structure-property activity connection of molecules. This perspective per-

mits to use mathematical formulation to understand the dynamics of a structure, as studying

the structure through experiments is usually very costly and laborious. A chemical graph is a

representation of a chemical compound where the compound elements like atoms or molecules are

considered as nodes or vertices and the bonding or connection between two nodes is represented

by a line called an edge. In molecular biology, graphs are often used to model and examine

information with complex connections. Some basic definitions, notations and terms related to

graphs are given in section 1.1.1.and 1.1.2.

1.1.1 Basic Notions and Terminologies

A graph G is a union of two sets, vertex set and edge set denoted by V and E, respectively. In

figure 1, {v1, v2, v3, v4} represent vertex set while the {e1, e2, e3, e4} represent the set of edges of

graph G. A graph having more than one edge between two vertices or loops on vertices is called

a multiple graph otherwise a simple graph. Figure 1 represents a simple graph. The cardinalities

of the sets V and E are called order and size of the graph G. In figure 1, V = {v1, v2, v3, v4}

and E = {e1, e2, e3, e4} imply both order and size of G is 4. Two vertices are called adjacent if

they are incident to the same edge. A path is an alternate sequence of nodes and edges where

nodes are joined by the edges and no edge is traversed more than once. The total number of

edges contained in a path is regarded as the length of the path. A graph is called connected if it

consists of only one component. There exists at least one path between every two vertices in a
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connected graph. Two vertices might be connected by more than one path, the path having the

shortest length defines the distance between two vertices. In figure 1, the vertices v2 and v3 are

connected by two paths P1 : v2, e1, v1, e3, v4, e4, v3 and P2 : v2, e1, v1, e2, v3 where the length of

P1 is 3 and the length of P2 is 2 so d(v2, v3) = 2. The total number of edges incident to a vertex

v is called its degree and denoted by =̃(v). A graph degree sequence is composed of the sequence

of degrees defined in an ascending order where the repetition is allowed. For instance, degree

sequence of graph G in figure 1 is (1, 2, 2, 3). Size (m) of a graph G = (V,E) might be determined

in the form of degrees by using the formula given below.

2m =
∑
v∈G

=̃(v)

Two graphs are called isomorphic if their structure is preserved under an isomorphism. More

precisely, if we can find a transformation which maps adjacent vertices of graph G to the adjacent

vertices of graph Ǵ then we say that G is isomorphic to Ǵ, symbolically it is written as G ∼= Ǵ.

Figure 1 shows two isomorphic graphs G and Ǵ.

Figure 2: Isomorphic Graphs G and Ǵ
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1.1.2 Topological Indices

Topological invariant presents a characteristics of graph which is found using just the abstract

structure of the graph instead of using specific graph representation. Graph invariants are rel-

atively used to study any graphical construction. Graph invariant is a numerical number that

is purely estimated by the graph. Capturing the topology of the graph, under study, helps to

study different chemical properties or activities connected with the graph structure. Such study

is based on the graph invariants called topological indices. Any two isomorphic graphs share the

same topological indices while the converse is not true. Connectivity indices are very valuable

in studying the thermodynamical characteristics of compounds for example, entropy, heat for-

mation, or enthalpy. Such quantifiable physical properties can be easily understood in the form

of such connectivity indices which are directly computed using the graphical structure of the

chemical compound under study A topological graph index, commonly referred to as molecu-

lar computing, is a mathematical formula that may be applied to any graph that represents a

molecule structure. It is possible to examine mathematical values and explore various physical

features of a molecule using this index. Therefore, it is an computational method used to avoid

expensive and time-consuming laboratory experiments.

1.2 Chemical Terminologies

This subsection is concerned with the basic definitions, notions and terminologies from chemistry

related to the main work of the thesis.

1.2.1 Chemical Compound

A material made of indistinguishable molecules comprising of atoms of more than one element

is termed as chemical compound.

1.2.2 Terbium Dioxide

Rare earth oxide materials with f-electron systems that contain lanthanides and actinides se-

ries have a significant research interest due to their various applications out of which terbium

oxide is the best and have fluorite-type RO2 (rare-earth dioxide) structure. Lanthanides have

certain unique properties e.g, same physical properties in the series, preferably bind with most

electronegative element, have very small crystal-field effects and little dependence on ligands.

Terbium metal is the companion of lanthanide programme in table of element [22]. Terbium is

4



a light,malleable, ductile, silver-gray metal element of the periodic table lanthanide group. It is

quite stable in the air, butit oxidises slowly and reacts to cold water. It is twice common as silver

on earth crust and never present in free form.It has the most fascinating physical and chemical

characteristics such as superconductivity at elevated temperatures,mixed valency, strong struc-

tural, magnetic, optical and electronic properties, etc [23]. Due to their exceptional catalytic

properties, relatively high basicity and fast oxygen ion mobility, Rare earth metals have been

discovered to be excellent possibilities for increasing sensing capabilities [24]. Tb doped ZnO is

best known for VOCs (ethanol and acetone) sensing [25].

At room temperature, TbO2 forms a face-centered cubic structure (space group Fm3m) 3. Tra-

ditional terbium oxide synthesis relied on precipitation, however a recently developed SHS (self

propagation high temperature synthesis) method produces a weakly agglomerated nanosized

powder of terbium oxide. Thermo chemical water splitting utilizes extreme temperatures and

chemical reactions to produce hydrogen andlow-cost, full-color flat-panel displays of the next

generation [31]. An effective EL system specifically requires the high performance of photolu-

minescence (PL) materials, thermal stability, and mobility of the charge carrier. Since their

photoluminescence has high quantum efficiency and a sharp spectral band, rare earth complexes

are theoretically worthy of EL use [32]. Rare earth metals have their partially filled inner f-

orbital that are surrounded by 5p and 5s orbitals that are totally filled kind of covering provides

transition of f-electrons that gives optical emission of radiations ranging from ultraviolet to the

infrared [33]. Rare earth metals are of great interest due to the transitions in their ions that

gives wide range of colors. Intense green electroluminescence of Tb ions makes it more attrac-

tive in multicolor light emitting devices as compared to the simple silicon based light emitting

devices.The enhanced electroluminescence is due to the transition in Tb ions, wide band gap and

the constant of the lattice (10.73◦A) parallel to Si (5.431◦A) [34].

This electroluminescence can be enhanced by the addition of a organic ligand to terbium ions.

Mostly its electroluminescence is affected by the structure of the pyrazolone derivative central

ligands and the N- or oxygen from water, from solar energy or from the exhaust gases of nu-

clear power reactions. This is a long-term process in technology, with potentially little to no

emissions of greenhouse gases. All chemical solvents used in the method can be fully recycled;

the only consumption is water, while the only production is H2 and O2 [27]. To date, thermo

chemical One of the more appealing methods of water splitting is by redox metal oxide reactions

long-term techniques of generating reusable Fuel cells can use H2 directly as well as additional

conversion to fuel cells. This method has a number of advantages: I The top cycle temperature
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(usually around 12001600 C) is consistent with long-term concentrated solar power; (ii) simple

inputs including water and heat are safe chemical solutions; (iii)Various reactions separate the

H2 and O2 streams produced; (iv) The closed cycle recycles the chemicals and reactants on a

continuous basis; (v) The H2 produced is pure enough to be processed directly, such as in a

polymer electrolyte membrane fuel cell (PEMFC) [28]. Terbium oxide is involved in the thermo

chemical hydrogen production Tb-WS (thermochemical water splitting) is a two-stage solar ther-

mochemical water splitting cycle. The thermal reduction of TbO2 into Tb and O2 is the first

phase of the cycle, The second stage produces H2 by oxidising Tb through a water splitting

process [29]. Electroluminescence refers to the creation of light (luminescence) by a medium in

response to the electrical current flowing through the medium [30]. Effective thin film organic or

conjugated polymericmaterial based electroluminescence (EL) devices are a promising candidate

forO-containing neutral ligands due to their ligand-to-metal energy transfer [35].

Figure 3: Structure of Terbium Dioxide

1.2.3 Graphitic Carbon Nitride

Graphitic carbon nitrides (g−C3N4) is a family of 2D polymer substance. It is a solid structure

made up of triazine or tris-s-triazine building blocks with sp2 hybridised C and N atoms in

alternate positions [30]. The atoms are arranged in such a way that each C atom is bound by

the three closest N atoms, two N atoms established bonds with three others adjoining atoms of

C can be seen in figure 4. The feature constitution such as g−C3N4 have a huge contentment of

N pyridinic spaces unify dispense, six lone-pair electrons of nitrogen in so-called’nitrogen Pots’,

it is ideal model locations for coordination and stabilisation [12].

Direct moisture of organic precursors containing urea, such as nitrogen, guanidine hydrochloride

and cyanamide is typically used to produce carbon nitride compounds. Due to its great thermal

and chemical solidity, powerless and appropriate preparation, and outstanding electrical charac-
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teristics, graphitic carbon nitride (g −C3N4), has gotten a lot of attention as an effective photo

catalyst [2]. Graphite Carbon Nitride g−C3N4’s semiconductor nature has remind huge strength

to improve photo (electro)chemical efficiencies in structure design operate point in a reachable

endless energy history [26].

1.2.4 Thermodynamical Properties of Chemical Compound

Figure 4: (a) Triazine and (b) Tri-s-triazine (Heptazine) Structures of g − C3N4 [29, 31].

To construct a thermodynamical structure we need to measure some physical quantities including

heat of formation and entropy.

Entropy

Entropy measure tells us how much heat energy we need to produce more in order to perform

some valued work. Since this measure is describing the lack of energy due to which performing

valuable work is not possible so it is also termed as measure of disorder [12, 14]. The entropy

of an isolated system has the highest entropy, according to the second law of thermodynamics.

Non-isolated systems can lose entropy if they enhance the entropy of their surroundings by at

least the same amount. Because entropy is a state function, every process that moves a system

from one state to another, whether reversible or irreversible, will change its entropy.
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Heat of Formation

During per unit formation, the heat absorbed or retained is referred as heat of formation provided

all the elements persist in normal state. Kilojoules per mole (kJ/mol) is the unit for the measure

of HoF. The term enthalpy is also used for HoF.

1.3 Chemical Graph

The term used to illustrate a molecule/chemical compound in the form of a graph is known

as molecular/chemical graph [7, 17]. Molecules are shown as vertices while their bonding or

interactions are shown by edges in a molecular graph. Mostly molecule graphs are simple graphs

and the measure of topological index is invariant under graph isomorphisms. Mostly, the degree

or distance measure is used to capture the topology of a graphical structure so the most common

indices are based on either degree or distance between the vertices. Indices comprising of degree

measurements perform a vigorous part in molecular graph theory. Two isomorphic graphs have

same connectivity indices and the cardinalities of vertex and edge sets of a graph are considered

as topological/connectivity indices as well. A connectivity index explains some helpful details

about structure and analysis of a molecular graph.

1.4 Mathematical Model

Defining a system in the form of a mathematical framework provides us an efficient approach

to analyze the dynamics of the system. Experimental work is mostly expensive and very time

consuming so transforming the system into a set of mathematical form makes this study very

coherent. Many softwares like MATLAB or Python are easily available which provide a very

friendly environment to construct mathematical models and study them.

1.5 Statistical Tests

As we may fit many mathematical models to the same set of data so making a choice is difficult

which one is best suited to us. There are several statistical tests which might help us to decide

which mathematical model or framework is a best fit for our data. Few of these tests are stated

here. Let (X,Y ) be a data set containing m observations. Suppose Y is the output variable

while X is input-data. Let f(X) be the set of corresponding fitted values of Y .

8



1.5.1 Mean Squared Error

The mean squared error (MSE) is defined in (1).

MSE =
1

m

∑
(x,y)∈(X,Y )

(y − f(x))2 (1)

1.5.2 Sum of Squared Error

The sum of squared error (SSE) is defined in (2).

SSE =
∑

(x,y)∈(X,Y )

(y − f(x))2 (2)

1.5.3 R2-Test

R2-test explains how much scatter the observed values are from our fitted line or curve. The

value closer to 1 indicates a good fit while value closer to zero indicates a poor estimate. Let S

be the variance defined by the fit and ϕ be the total variance then R2 is defined by the formula

given in (3).

R2 =
S

ϕ
(3)

1.5.4 Root Mean Squared Error

The root mean squared error (RMSE) is defined in (4.)

RMSE =

√√√√ 1

m

∑
(x,y)∈(X,Y )

(y − f(x))2 (4)

There are several other statistical tests available in the literature but we will just consider

RMSE, SSE or R2.

1.6 Confidence Interval

A confidence is a range of values that estimates for an unknown parameter, defined as an interval

with a lower bound and an upper bound. The interval is calculated at a designated confidence

level. The most common confidence level is 95 percent.
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2 Literature Review

The role of graph theory is vital in studying the chemical properties of a specific chemical

structure. In particular, the topological or connectivity indices assist to identify the underlying

topology of a chemical compound which helps to study different properties or chemical activities

of molecules associated with their chemical configuration. Lately, various chemical compounds

have been explored utilizing their corresponding visual representation based on their fundamen-

tal topology. A chemical graph is a visualization of a molecular substance that elucidates its

components and their coordination, components are shown as points and lines are utilized to

show associations between chemical components.

Terbium, a lanthanide, is a light, malleable, ductile, silver-gray metal element of the periodic

table. TbO2 at room temperature exhibits a face-centered cubic structure.. The objective of this

study is to determine relationships between the thermodynamical properties and the topological

indices of TbO2. Such relationships might provide insights to comprehend the structural ons of

TbO2.

Graph theory has many applications in various science disciplines, specifically biology, chemistry

and computer science. It provides a way to illustrate any structure or compound in a graphical

form which helps to study the interrelated behavior of chemical components. It provides a deep

insight how the chemical components or molecules are related and influence each other. Graph

invariants are frequently used to study any graphical structure. Graph invariant is a numerical

number that is exclusively evaluated by the graph. Comprehension with the topology of the

graph, under consideration, helps us to study different chemical properties or activities interre-

lated with the graph structure. Such study is conducted based on the graph invariants called

topological indices. Any two isomorphic graphs share the same topological indices while the

converse is not true. Connectivity indices are very worthwhile in studying the thermodynam-

ical properties of chemical compounds for instance, entropy, boiling points, heat of formation,

or enthalpy. Such measurable physical properties can be easily understood in the form of such

connectivity indices which are directly computed using the graphical structure of the chemical

compound under consideration.

The first zagreb index M1(G) was the first index presented in 1972 by Gutman to illustrate the

connection between graphs and orbital shapes which was further extended in 2004 and named

as the second zagreb index M2(G). There are many other degree based indices as well; few of

them are listed here. Suppose G = (V,E) denote a graph with V representing the set of vertices

11



and E representing the set of edges. The degree =̃(s) of a vertex s is the number of edges of G

incident with s.

The first and most well-known degree-based index was created by Milan Randic [32] in 1975 and

can be found in the equation below.

R− 1
2
(G) =

∑
st∈E(G)

1√
=̃(s)× =̃(t)

In 1988, Bollobás el at. [9] and Amic et al. [3] proposed the general Randić index exclusively. For

more details about Randić index, its properties and important results see [13, 28]. The general

Randić index is defined as:

Rα(G) =
∑

st∈E(G)

(=̃(s)× =̃(t))α

Estrada et al. established the atom bond connectivity index in [17]. It is defined as:

ABC(G) =
∑

st∈E(G)

√
=̃(s) + =̃(t)− 2

=̃(s)× =̃(t)

The geometric arithmetic index GA of a graph G was created by Vukičević et al. [37]. It is defined

as:

GA(G) =
∑

st∈E(G)

2

√
=̃(s)× =̃(t)

=̃(s) + =̃(t)

The first and second Zagreb indices are written as following:

M1(G) =
∑

st∈E(G)

(=̃(s) + =̃(t))

M2(G) =
∑

st∈E(G)

(=̃(s)× =̃(t))

In 2008, Došlić defined the first Zagreb coindex and second Zagreb coindex in [19], as following:

M1(G) =
∑

st/∈E(G)

[=̃(s) + =̃(t)]

M2(G) =
∑

st/∈E(G)

(=̃(s)× =̃(t))

12



In 2013, Shirdel, et al. [19] introduced a new degree-based Zagreb index namely hyper-Zagreb

index as given below:

HM(G) =
∑

st∈E(G)

[
=̃(s) + =̃(t)

]2
In 2012, Ghorbani and Azimi, [24] defined two new versions of Zagreb indices of a graph G.

The first multiple Zagreb index . PM1(G) and second multiple Zagreb index PM2(G) and these

indices are defined as:

PM1(G) =
∏

st∈E(G)

[=̃(s) + =̃(t)]

PM2(G) =
∏

st∈E(G)

[=̃(s)× =̃(t)]

Furtula and Gutman, [18] presented forgotten topological index which was characterized as

follows:

F(G) =
∑

st∈E(G)

(
=̃(s)2 + =̃(t)2

)

Spurred by the achievement of the ABC index, Furtula set forth its changed adaptation, [5, 6]

and they named as augmented Zagreb index and is characterized as:

AZI(G) =
∑

st∈E(G)

(
=̃(s)× =̃(t)

=̃(s) + =̃(t)− 2

)3

Another topological index based on the vertex degree is the Balaban index. This index for a

graph G of order k, size l is defined as

J(G) =
l

l − k + 2

∑
st∈E(G)

1√
=̃(s)× =̃(t)

13



The redefined version of the Zagreb indices were defined by Ranjini et al. [33] called, the redefined

first, second and third redefined Zagreb indices. These indices are presented as follows:

ReZG1(G) =
∑

st∈E(G)

=̃(s) + =̃(t)

=̃(s)× =̃(t)

ReZG2(G) =
∑

st∈E(G)

=̃(s)× =̃(t)

=̃(s) + =̃(t)

ReZG3(G) =
∑

st∈E(G)

=̃(s)× =̃(t)(=̃(s) + =̃(t))

14
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3 Main Results

This chapter contains the main results of this thesis. Section 3.1 provides the results regarding

the chemical graph of terbium dioxide including computations of various topological indices and

different thermodynamical properties of TbO2 and graphical models between topological indices

and physical properties.

3.1 Terbium Dioxide

3.1.1 Topological Indices of TbO2

The number of vertices and edges of structure of TbO2 are 22lk and 32lk, respectively. Since

there are three type of vertices in TbO2 namely the vertices of degree 1, 2, 4, respectively. The

vertex partition of the vertex set TbO2 is presented in table 1. Also the edge partition of TbO2

based on degrees of end vertices of each edge are depicted in table 2. Let G = (V,E) denotes

Table 1: Vertex partition of TbO2 based on degree of vertex

=̃(s) Frequency Set of Vertices

1 4lk + 4 V1

2 2k + 2l − 4 V2

4 18lk − 2l − 2k V3

Table 2: Edge partition of TbO2

(=̃(s), =̃(t)) Frequency Set of Edges

(1, 4) 12lk − 2k − 2l E1

(2, 4) 4lk − 2l − 2k E2

(4, 4) 16lk + 4k + 4l E3

the chemical graph of TbO2, and suppose that =̃(s) denotes the degree of the vertex s.

• Rα index of TbO2

For α = 1,

R1(G) =
∑

st∈E(G)

(=̃(s)× =̃(t))

= (12lk − 2k − 2l)(1× 4) + (4lk − 2l − 2k)(2× 4) + (16lk + 4k + 4l)(4× 4)

= 336lk + 40l + 40k
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For α = −1,

R−1(G) =
∑

st∈E(G)

1

(=̃(s)× =̃(t))

= (12lk − 2k − 2l)
1

(1× 4)
+ (4lk − 2l − 2k)

1

(2× 4)
+ (16lk + 4l + 4k)

1

(4× 4)

=
9lk − l − k

2
.

For α = 1
2 ,

R 1
2
(G) =

∑
st∈E(G)

√
(=̃(s)× =̃(t))

= (12lk − 2k − 2l)(2) + (4lk − 2l − 2k)(2
√

2) + (16lk + 4l + 4k)(4)

= 88lk + 12l + 12k + (8lk − 4l − 4k)(
√

2)

For α = − 1
2 ,

R− 1
2
(G) =

∑
st∈E(G)

1√
(=̃(s)× =̃(t))

= (12lk − 2k − 2l)
1√

(1× 4)
+ (4lk − 2k − 2l)

1√
(2× 4)

+ (16lk + 4l + 4k)
1√

(4× 4)

= (12lk − 2k − 2l)
1

(2)
+ (4lk − 2l − 2k)

1

(2
√

2)
+ (16lk + 4l + 4k)

1

(4)

= 10lk + (2lk − l − k)
1

(
√

2)

The numerical representation of above computed results are presented in table 3.

Graphical illustrations of Randic indices are provided in figure 5.

Table 3: Randic indices for α ∈ {1, −1, 1
2 , −

1
2}

[l, k] R1(G) R−1(G) R 1
2
(G) R− 1

2
(G)

[1, 1] 416 3.5 112 10
[2, 2] 1504 16 416 42.828
[3, 3] 3264 37.5 912 98.485
[4, 4] 5696 68 1600 176.971
[5, 5] 8800 107.5 2480 278.284
[6, 6] 12576 156 3552 402.426
[7, 7] 17024 213.5 4816 549.397
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Figure 5: Graphical Representation of Randic Indices

• ABC index of TbO2

The result for ABC index is follows as:

ABC(G) =
∑

st∈E(G)

√
=̃(s) + =̃(t)− 2

dsdt

= (12lk − 2k − 2l)
(√1 + 4− 2

1× 4

)
+ (4lk − 2l − 2k)

(√2 + 4− 2

2× 4

)
+ (16lk + 4l + 4k)

(√4 + 4− 2

4× 4

)
= (12lk − 2k − 2l)

(√3

4

)
+ (4lk − 2l − 2k)

(√1

2

)
+ (16lk + 4l + 4k)

(√3

8

)

• GA index of TbO2
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The GA index is computed as below:

GA(G) =
∑

st∈E(G)

2

√
=̃(s)× =̃(t)

=̃(s) + =̃(t)

= (12lk − 2k − 2m)
(2
√

1× 4

1 + 4

)
+ (4lk − 2l − 2k)

(2
√

2× 4

2 + 4

)
+ (16lk + 4l + 4k)

(2
√

4× 4

4 + 4

)
= (12lk − 2k − 2l)

(4

5

)
+ (4lk − 2l − 2k)

(2
√

2

3

)
+ (16lk + 4l + 4k)

The numerical representation of above computed results are presented in table 4. Graphical

Table 4: ABC and GA indices for TbO2.

[l, k] ABC(G) GA(G)
[1, 1] 21.625 30.4
[2, 2] 89.288 119.5425
[3, 3] 202.988 267.4274
[4, 4] 362.725 474.0548
[5, 5] 568.499 739.425
[6, 6] 820.312 1063.537
[7, 7] 1118.161 1446.392

illustrations of ABC(G) and GA(G) indices are provided in figure 6.

• M1 and M2 indices of TbO2

The first and second Zagreb indices are computed as below:

M1(G) =
∑

st∈E(G)

(=̃(s) + =̃(t))

= (12lk − 2k − 2l)(1 + 4) + (4lk − 2l − 2k)(2 + 4) + (16lk + 4l + 4k)(4 + 4)

= 212lk −+10k + 10l.
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Figure 6: Graphical Representations of ABC(G) and GA(G) Indices

M2(G) =
∑

st∈E(G)

(=̃(s)× =̃(t))

= (12lk − 2k − 2l)(1× 4) + (4lk − 2l − 2k)(2× 4)

+ (16lk + 4l + 4k)(4× 4)

= 208lk + 8k + 8l.

• M1 and M2 of TbO2

The first and second Zagreb co-indices are computed as below:

M1(G) =
∑

pq/∈E(G)

(=̃(s) + =̃(t))

= 2(32lk)(24lk)− (212lk + 10k + 10l)

= 15364l2k2 − 212lk − 10l + 10k.
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M2(G) =
∑

pq/∈E(G)

(=̃(s)× =̃(t))

M2(G) = 2(24lk)2 − 1

2
(212lk + 10k + 10l)− (208lk + 8k + 8l)

= 1152l2k2 − 314lk − 13k − 13l.

The above-mentioned computed results are represented numerically are presented in table 5.

Graphical illustrations of ABC(G) and GA indices are provided in figure 7.

Table 5: M1(G), M2(G), M1(G), M2(G) indices for TbO2.

[l, k] M1(G) M2(G) M1(G) M2(G)
[1, 1] 232 224 15152 812
[2, 2] 888 864 244976 17124
[3, 3] 1968 1920 1242576 90408
[4, 4] 3472 3392 3929792 289784
[5, 5] 5400 5280 9597200 712020
[6, 6] 7752 7584 19904112 1481532
[7, 7] 10528 10304 36878576 2750384

Figure 7: Graphical Representations of ABC and GA Indices

• The HM index of TbO2
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The hyper Zagreb index is calculated as follows:

HM(G) =
∑

st∈E(G)

(
=̃(s) + =̃(t)

)2
HM(G) = (12lk − 2k − 2l)

(
1 + 4

)2
+ (4lk − 2l − 2k)

(
2 + 4

)2
+ (16lk + 4l + 4k)

(
4 + 4

)2
HM(G) = 4540lk + 902l + 902k.

The numerical representation of above computed result is presented in table 6.

Graphical illustration of HM(G) index is provided in figure 8.

Table 6: HM(G) for TbO2

[l, k] HM(G)
[1, 1] 6344
[2, 2] 21768
[3, 3] 46272
[4, 4] 79856
[5, 5] 122520
[6, 6] 174264
[7, 7] 235088

Figure 8: Graphical Representations of HM(G) Index

• F index of TbO2
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The Forgotten index is calculated as:

F(G) =
∑

st∈E(G)

(
=̃(s)2 + =̃(t)2

)
= (12lk − 2k − 2l)((1)2 + (4)2) + (4lk − 2l − 2k)((2)2 + (4)2) + (16lk + 4l + 4k)((4)2 + (4)2)

= (12lk − 2k − 2l)(17) + (4lk − 2l − 2k)(20) + (16lk + 4l + 4k)(32)

= 796lk + 54l + 54k.

• AZ index of TbO2

The augmented Zagreb index is calculated as below:

AZI(G) =
∑

st∈E(G)

(
=̃(s)× =̃(t)

=̃(s) + =̃(t)− 2

)3

=
∑
st∈E1

(
1× 4

1 + 4− 2

)3

+
∑
st∈E2

(
2× 4

2 + 4− 2

)3

+
∑
st∈E3

(
4× 4

4 + 4− 2

)3

=
64

27
(12lk − 2k − 2l) + 8(4lk − 2l − 2k) +

512

27
(16lk + 4l + 4k)

=
9824lk

27
+

496l

9
+

496k

9
.

• J index of Tbo2

The Balaban index is computes as:

J(G) =
q

q − p+ 2

∑
st∈E(G)

1√
=̃(s)× =̃(t)

=
q

q − p+ 2

[ ∑
st∈E1

1√
1× 4

+
∑
st∈E2

1√
2× 4

+
∑
st∈E3

1√
4× 4

]

=
22lk

10lk − 2
×
[

1

2
(12lk − 2k − 2l) +

1

2
√

2
(4lk − 2l − 2k) +

1

4
(16lk + 4l + 4k)

]

The above-mentioned computed findings are numerically represented in table 7. Graphical illus-

trations of F(G), AZI(G) and J(G) indices are provided in figure 9.

• ReZG1, ReZG2 and ReZG3 indices of TbO2
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Table 7: F(G), AZI(G), J(G) indices for TbO2.

[l, k] F(G) AZI(G) J(G)
[1, 1] 904 474.07 27.5
[2, 2] 3400 1675.85 99.18
[3, 3] 7488 3605.33 221.59
[4, 4] 13168 6262.52 394.26
[5, 5] 20440 9647.41 617.16
[6, 6] 29304 13760 890.28
[7, 7] 39760 18600.3 1213.63

Figure 9: Graphical Representations of F(G), AZI(G) and J(G) Indices

The redefined Zagreb indices are computed as:

ReZG1(G) =
∑

st∈E(G)

=̃(s) + =̃(t)

=̃(s)× =̃(t)

=
∑
st∈E1

1 + 4

1× 4
+
∑
st∈E2

2 + 4

2× 4
+
∑
st∈E3

4 + 4

4× 4

=
5

4
(12lk − 2k − 2l) +

3

4
(4lk − 2l − 2k) +

1

2
(16lk + 4l + 4k)).
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ReZG2(G) =
∑

st∈E(G)

=̃(s)× =̃(t)

=̃(s) + =̃(t)

=
∑
st∈E1

1× 4

1 + 4
+
∑
st∈E2

2× 4

2 + 4
+
∑
st∈E3

4× 4

4 + 4

=
4

5
(12lk − 2k − 2l) +

4

3
(4lk − 2l − 2k) + (2)(16lk + 4l + 4k)).

ReZG3(G) =
∑

st∈E(G)

[=̃(s)=̃(t)(=̃(s) + =̃(t))]

= 20(12lk − 2k − 2l) + 48(4lk − 2l − 2k) + 128(16lk + 4l + 4k)

= 2480lk + 376l + 376k.

The numerical representations of above computed results are presented in table 8. Graphical

Table 8: ReZG1(G),ReZG2(G),ReZG3(G) indices for TbO2

[l, k] ReZG1(G) ReZG2(G) ReZG3(G)
[1, 1] 22 54.4 3232
[2, 2] 96 202.67 11424
[3, 3] 222 444.8 24576
[4, 4] 400 780.8 42688
[5, 5] 630 1210.67 65760
[6, 6] 912 1734.4 93792
[7, 7] 1246 2352 126784

illustrations of ReZG1(G), ReZG2(G) and ReZG3(G) indices are provided in figure 10.

3.1.2 HoF and Entropy of TbO2

The topological indices R1, R−1, R 1
2
, R− 1

2
, ABC, GA, M1, M2, M1 and M2 etc were determined

for various numbers of unit cells of TbO2. These indices are linked to the thermodynamic

characteristics of TbO2 such as entropy and heat of formation. TbO2 has a standard molar HoF

of 18.70kJmol−1(4.47kcal/mol) the standard molar HoF for one formula unit was obtained by

dividing it with Avogadro’s number. The HoF of the complete cell was calculated by multiplying

the obtained value by the number of formula units contained in the cell. The HoF of TbO2 has

an inverse relationship with its crystal size, decreasing as the number of unit cells increases,

according to these calculations. The entropy of polycyclic graphite carbon nitride was calculated

using the same approach. TbO2 has a molar standard Entropy of 77Jmol−1K−1. The result

was then multiplied by the number of formula units present in a single unit cell. The value of
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Figure 10: Graphical Representations of ReZG1(G), ReZG2(G) and ReZG3(G) Indices

entropy falls as the number of cells increases. The same downward trend can be seen in the heat

of creation.

The entropy and HoF of TbO2 for 1 ≤ l ≤ 7 and 1 ≤ k ≤ 7 matching to various formula units are

computed in table 9 as follows: Since degree-base indices, as well as the accompanying entropy

Table 9: HoF, Entropy values corresponding to various formula units of TbO2

[l, k] Formula units Entropy × 1022kJ HoF × 1022kJ
[1, 1] 4 1.2462 5.1316
[2, 2] 16 4.9850 20.5264
[3, 3] 36 11.2162 46.1846
[4, 4] 64 19.9400 82.1059
[5, 5] 100 31.1562 128.2905
[6, 6] 144 44.8650 184.7384
[7, 7] 196 61.0663 251.44951

and HoF, have a wide range of applications in science, including pharmaceutical, chemistry,

biological therapies, and computer science. So graphical and numerical representation can benefit

the scientists from these calculated outcomes.

3.1.3 Curve Fitting of HoF (and Entropy) vs Topological Indices

We can study the link between several variables to a set of data. This analysis is performed to

investigate the relationship between HoF/entropy and topological indices. Curve fitting methods
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have been implemented to find this link. (RMSE), sum of squared error (SSE) and R2 are accuracy

measures used in the analysis. The rational (rat) strategy has produced the best outcomes in

every situation. MATLAB was used to do all of the simulations. Tables 10-11 present the errors

for each fit.

3.1.4 Models for Indices vs HoF

Graphical models of HoF vs indices are shown in figures 11-27.

HoF(R1) =
p1 × (R1) + p2

(R1)3 + q21 × (R1) + q2 + q3
,

where (R1) is normalized by mean 7040 and std 6110

Parametric values (alongside 95% CI):

p1 = −2558, CI= (−3680,−1436)

p2 = −2927, CI= (−4205,−1648)

q1 = −2.136, CI= (−2.393,−1.88)

q2 = 1.809, CI= (1.128, 2.49)

q3 = −118, CI= (−169.6,−66.32)

0 2000 4000 6000 8000 10000 12000 14000 16000
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H
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HoF vs. R1
R1

Figure 11: HoF vs R1

HoF((R−1) =
p1 × (R−1) + p2

(R−1)4 + q1 × (R−1)3 + q2 × (R−1)2 + q3 × (R−1) + q4
,

where (R−1) is normalized by mean 86 and std 77.46.

Parametric values (alongside 95% CI):

p1 = −2767, CI= (−6440, 904.8)

p2 = −3093, CI= (−7207, 1021)

q1 = −1.854, CI= (−2.53,−1.177)
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q2 = 0.8569, CI= (−0.6522, 2.366)

q3 = −1.957, CI= (−5.415, 1.5)

q4 = −123.4, CI= (−287.5, 40.63)
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Figure 12: HoF vs R−1

HoF(R 1
2
) =

p1 × (R 1
2
) + p2

(R 1
2
)4 + q1 × (R 1

2
)3 + q2 × (R 1

2
)2 + q3 × (R 1

2
) + q4

,

where (R 1
2
) is normalized by mean 1984 and std 1731

Parametric values (alongside 95% CI):

p1 = 6.405e+ 05, CI= (−1.351e+ 09, 1.352e+ 09)

p2 = 7.32e+ 05, CI= (−1.544e+ 09, 1.545e+ 09)

q1 = −263.5, CI= (−5.519e+ 05, 5.514e+ 05)

q2 = 544.6, CI= (−1.148e+ 06, 1.149e+ 06)

q3 = −381.3, CI= (−8.06e+ 05, 8.052e+ 05)

q4 = 2.946e+ 04, CI= (−6.212e+ 07, 6.218e+ 07)
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Figure 13: HoF vs R 1
2
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HoF(R− 1
2
) =

p1 × (R− 1
2
) + p2

(R− 1
2
)4 + q1 × (R− 1

2
)3 + q2 × (R− 1

2
)2 + q3 × (R− 1

2
) + q4

,

where (R− 1
2
) is normalized by mean 222.6 and std 198.8

Parametric values (alongside 95% CI):

p1 = 5.987e+ 05, CI= (−1.347e+ 09, 1.348e+ 09)

p2 = 6.741e+ 05, CI= (−1.517e+ 09, 1.518e+ 09)

q1 = −100.9, CI= (−2.226e+ 05, 2.224e+ 05)

q2 = 46.26, CI= (−1.033e+ 05, 1.034e+ 05)

q3 = 317.7, CI= (−7.136e+ 05, 7.142e+ 05)

q4 = 2.695e+ 04, CI= (−6.062e+ 07, 6.067e+ 07)
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Figure 14: HoF vs R− 1
2

HoF(ABC) =
p1 + p2

(ABC)4 + q1 × (ABC)3 + q2 × (ABC)2 + q3 × (ABC) + q4
,

where (ABC) is normalized by mean 454.8 and std 404.1

Parametric values (alongside 95% CI):

p1 = 9.075e+ 05, CI= (−3.302e+ 09, 3.304e+ 09)

p2 = 1.023e+ 06, CI= (−3.722e+ 09, 3.724e+ 09)

q1 = −130.8, CI= (−4.686e+ 05, 4.683e+ 05)

q2 = 41.11, CI= (−1.483e+ 05, 1.484e+ 05)

q3 = 399.3, CI= (−1.451e+ 06, 1.452e+ 06)

q4 = 4.095e+ 04, CI= (−1.49e+ 08, 1.491e+ 08)

HoF(GA) =
p1 × (GA) + p2

(GA)4 + q1 × (GA)3 + q2 × (GA)2 + q3 × (GA) + q4
,

29



0 200 400 600 800 1000
ABC

0

10

20

30

40

50

60

H
oF

HoF vs. ABC
ABC

Figure 15: HoF vs ABC

where (GA) is normalized by mean 591.5 and std 521.5. Parametric values (alongside 95% CI):

p1 = 6.295e+ 05, CI= (−9.53e+ 08, 9.543e+ 08)

p2 = 7.138e+ 05, CI= (−1.081e+ 09, 1.082e+ 09)

q1 = −164.5, CI= (−2.462e+ 05, 2.459e+ 05)

q2 = 248.1, CI= (−3.751e+ 05, 3.756e+ 05)

V q3 = −1.624, CI= (−3409, 3406)

q4 = 2.864e+ 04, CI= (−4.336e+ 07, 4.341e+ 07)
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Figure 16: HoF vs GA

HoF(M1) =
p1 × (M1) + p2

(M1)3 + q1 × (M1)2 + q2 × (M1) + q3
,

where is normalized by mean 4320 and std 3791.

Parametric values (alongside 95% CI):

p1 = −3341, CI= (−5810,−872.7)

p2 = −3799, CI= (−6597,−1001)

q1 = −1.772, CI= (−2.281,−1.262)

q2 = 0.7253, CI= (−0.178, 1.629)

q3 = −152.7, CI= (−265.3,−40.01)
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Figure 17: HoF vs M1

HoF(M2) =
p1 × (M1) + p2

(M1)3 + q1 × (M1)2 + q2 × (M1) + q3
,

where (M2) is normalized by mean 4224 and std 3712.

Parametric values (alongside 95% CI):

p1 = −3473, CI= (−6278,−668.8)

p2 = −3946, CI= (−7123,−770)

q1 = −1.71, CI= (−2.295,−1.126)

q2 = 0.5448, CI= (−0.4644, 1.554)

q3 = −158.5, CI= (−286.3,−30.68)
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Figure 18: HoF vs M2

HoF(M1) =
p1 × (M2) + p2

(M2)4 + q1 × (M2)3 + q2 × (M2)2 + q3 × (M2) + q4
,

where (M1) is normalized by mean 1.026e+ 07 and std 1.372e+ 07.

Parametric values (alongside 95% CI):

p1 = 9.12e+ 05, CI= (−5.922e+ 10, 5.922e+ 10)
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p2 = 6.923e+ 05, CI= (−4.495e+ 10, 4.495e+ 10)

q1 = 2091, CI= (−1.359e+ 08, 1.359e+ 08)

q2 = −6936, CI= (−4.503e+ 08, 4.503e+ 08)

q3 = 1.51e+ 04, CI= (−9.801e+ 08, 9.801e+ 08)

q4 = 2.186e+ 04, CI= (−1.419e+ 09, 1.419e+ 09)
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Figure 19: HoF vs M1

HoF(M2) =
p1 × (M2) + p2

(M2)3 + q1 × (M2)2 + q2 × (M2) + q3
,

where (M2) is normalized by mean 7.632e+ 05 and std 1.023e+ 06

Parametric values (alongside 95% CI):

p1 = −2.416e+ 06, CI= (−6.719e+ 10, 6.719e+ 10)

p2 = −1.896e+ 06, CI= (−5.271e+ 10, 5.27e+ 10)

q1 = 5874, CI= (−1.634e+ 08, 1.634e+ 08)

q2 = −3.721e+ 04, CI= (−1.035e+ 09, 1.035e+ 09)

q3 = −5.77e+ 04, CI= (−1.604e+ 09, 1.604e+ 09)
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Figure 20: HoF vs M2
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HoF(HM) =
p1 × (HM) + p2

(HM)2 + q1 × (HM) + q2
,

where (HM) is normalized by mean 9.802e+ 04 and std 8.409e+ 04.

Parametric values (alongside 95% CI):

p1 = 8345, CI= (−2.846e+ 04, 4.515e+ 04)

p2 = 9564, CI= (−3.254e+ 04, 5.166e+ 04)

q1 = −6.927, CI= (−29.01, 15.15)

q2 = 388.1, CI= (−1319, 2096)

0 0.5 1 1.5 2
HM 105

0

10

20

30

40

50

60

H
oF

HoF vs. HM
HM

Figure 21: HoF vs HM

HoF(F) =
p1 × (F) + p2

(F)4 + q1 × (F)3 + q2 × (F)2 + q3 × (F) + q4
,

where (F) is normalized by mean 1.635e+ 04 and std 1.43e+ 04.

Parametric values (alongside 95% CI):

p1 = 6.763e+ 05, CI= (−1.435e+ 09, 1.437e+ 09)

p2 = 7.691e+ 05, CI= (−1.632e+ 09, 1.634e+ 09)

q1 = −183.3, CI= (−3.85e+ 05, 3.846e+ 05)

q2 = 317.8, CI= (−6.738e+ 05, 6.744e+ 05)

q3 = −165.1, CI= (−3.519e+ 05, 3.516e+ 05)

q4 = 3.094e+ 04, CI= (−6.566e+ 07, 6.572e+ 07)

HoF(AZI) =
p1 × (AZI) + p2

(AZI)4 + q1 × (AZI)3 + q2 × (AZI)2 + q3 × (AZI) + q4
,
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Figure 22: HoF vs F

where (AZI) is normalized by mean 7718 and std 6667.

Parametric values (alongside 95% CI):

p1 = 3.228e+ 05, CI= (−1.699e+ 08, 1.706e+ 08)

p2 = 3.704e+ 05, CI= (−1.95e+ 08, 1.957e+ 08)

q1 = −140.3, CI= (−7.305e+ 04, 7.277e+ 04)

q2 = 311.3, CI= (−1.637e+ 05, 1.643e+ 05)

q3 = −297, CI= (−1.572e+ 05, 1.566e+ 05)

q4 = 1.495e+ 04, CI= (−7.871e+ 06, 7.901e+ 06)
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Figure 23: HoF vs AZI

HoF(J) =
p1 × (J) + p2

(J)3 + q1 × (J)2 + q2 × (J) + q3
,

where (J) is normalized by mean 494.8 and std 437.4.

Parametric values (alongside 95% CI):

p1 = 8.218e+ 05, CI= (−4.139e+ 08, 4.156e+ 08)

p2 = 9.235e+ 05, CI= (−4.652e+ 08, 4.67e+ 08)

q1 = −237, CI= (−1.188e+ 05, 1.183e+ 05)

q2 = 569.3, CI= (−2.864e+ 05, 2.875e+ 05)

q3 = 3.695e+ 04, CI= (−1.861e+ 07, 1.868e+ 07)
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Figure 24: HoF vs J

HoF(ReZG1) =
p1 × (ReZG1) + p2

(ReZG1)3 + q1 × (ReZG1)2 + q2 × (ReZG1) + q3
,

where (ReZG1) is normalized by mean 504 and std 451.3.

Parametric values (alongside 95% CI):

p1 = −7616, CI= (−3.294e+ 04, 1.771e+ 04)

p2 = −8560, CI= (−3.698e+ 04, 1.986e+ 04)

q1 = 0.1822, CI= (−7.732, 8.096)

q2 = −5.012, CI= (−24.72, 14.7)

q3 = −341.9, CI= (−1478, 794.4)
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Figure 25: HoF vs ReZG1

HoF(ReZG2) =
p1 × (ReZG2)2 + p2 × (ReZG2) + p3

(ReZG2) + q1
,

where (ReZG2) is normalized by mean 968.5 and std 845.7.

Parametric values (alongside 95% CI):

p1 = 21.8, CI= (21.14, 22.47)
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p2 = −23.57, CI= (−110.4, 63.31)

p3 = −54.85, CI= (−153, 43.27)

q1 = −2.21, CI= (−6.172, 1.752)

q3 = −106.8, CI= (−298.8, 85.1)
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Figure 26: HoF vs ReZG2

HoF(ReZG3) =
p1 × (ReZG3)2 + p2 × (ReZG3) + p3

(ReZG3)3 + q1 × (ReZG3)2 + q2 × (ReZG3) + q3
,

where (ReZG3) is normalized by mean 5.261e+ 04 and std 4.544e+ 04.

Parametric values (alongside 95% CI):

p1 = 88.95 (−8718, 8896)

p2 = −2204 (−1.404e+ 04, 9633)

p3 = −2646 (−7390, 2098)

q1 = −2.302 (−7.697, 3.092)

q2 = 6.274 (−402.5, 415.1)
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Figure 27: HoF vs ReZG3
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Table 10: Goodness of Fit for HoF vs indices for TbO2

Index Fit Type SSE R2 RMSE

R1 rat13 0.000394 1 0.01397
R−1 rat14 4.287e-05 1 0.006547
R 1

2
rat14 0.001768 1 0.04204

R− 1
2

rat14 0.00248 1 0.0498

ABC rat14 0.002838 1 0.05327
GA rat14 0.0009871 1 0.03142
M1 rat13 0.0006736 1 0.01835
M2 rat13 0.0007479 1 0.01934

M1 rat14 1.6585 0.9994 1.298

M2 rat13 7.392 0.9975 1.923
HM rat12 0.02971 1 0.09951
F rat14 0.00167 1 0.04087

AZI rat14 0.0004311 1.000 0.02076
J rat13 0.00561 1.000 0.05296

ReG1 rat13 0.002809 1 0.03748
ReG2 rat21 0.01276 1 0.06521
ReG3 rat23 0.000422 1 0.02054

3.1.5 Entropy vs Indices

Graphical models of entropy vs indices are shown in figures 28-44.

Entropy(R1) =
p1 × (R1) + p2

(R1)2 + q1 × (R1) + q2
,

where (R1) is normalized by mean 7040 and std 6110.

Parametric values (alongside 95% CI):

p1 = 2e+ 04 , (R−1)= (561, 4e+ 04)

p2 = 2.529e+ 04, CI= (710, 5e+ 04)

q1 = −3.7 , CI= (−5.6,−1.9)

q2 = 248, CI= (7, 489)
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Figure 28: Entropy vs R1
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Entropy(R−1) =
p1 × (R−1)2 + p2 × (R−1) + p3

(R−1)2 + q1 × (R−1) + q2
,

where (R−1) is normalized by mean 86 and std 77.46.

Parametric values (alongside 95% CI):

p1 = 4.795e+ 04 , CI= (2e+ 04, 7.718e+ 04)

p2 = e+ 05, CI= (4e+ 04, 2e+ 05)

p3=7.612e+ 04, CI=(2e+ 04, e+ 05) q1 = 532 , CI= (206, 858)

q2 = 738, CI= (220, 1255)
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Figure 29: Entropy vs R−1

Entropy(R 1
2
) =

p1 × (R 1
2
)2 + p2 × (R 1

2
) + p3

(R 1
2
)2 + q1 × (R 1

2
) + q2

,

where (R 1
2
) is normalized by mean 86 and std 77.46.

Parametric values (alongside 95% CI):

p1 = e+ 06 , CI= (−9e+ 07, 9e+ 07)

p2 = 3e+ 06, CI= (−2e+ 08, 2e+ 08)

p3=2e+ 06, CI=(−e+ 08, e+ 08) q1 = e+ 04 , CI= (−e+ 06, e+ 06)

q2 = 2e+ 04, CI= (−e+ 06, 2e+ 06)
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Figure 30: Entropy vs R 1
2

38



Entropy(R− 1
2
) =

p1 × (R− 1
2
) + p2

(R− 1
2
)4 + q1 × (R− 1

2
)3 + q2 × (R− 1

2
)2 + q3 × (R− 1

2
) + q4

,

where (R− 1
2
) is normalized by mean 222.6 and std 198.8.

Parametric values (alongside 95% CI):

p1 = −4e+ 04, CI= (−3e+ 05, 2e+ 05)

p2 = −5.175e+ 04, CI= (−3e+ 05, 2e+ 05)

q1 = −3 , CI= (−9, 3)

q2 = 3, CI= (−15.1, 21.94)

q3 = −4 , CI= (−31, 24)

q4 = −503, CI= (−3384, 2379)
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Figure 31: Entropy vs R− 1
2

Entropy(ABC) =
(p1 × (ABC)2 + p2 × (ABC) + p3

(ABC)2 + q1 × (ABC) + q2
,

where (ABC) is normalized by mean 454.8 and std 404.1.

Parametric values (alongside 95% CI):

p1 = −e+ 06, CI= (−5e+ 07, 5e+ 07)

p2 = −4e+ 06, CI= (−e+ 08, e+ 08) p3 = −2.766e+ 06, CI= (−10e+ 07, 9e+ 07)

q1 = −e+ 04, CI= (−6e+ 05, 5e+ 05)

q2 = −2e+ 04, CI= (−9e+ 05, 9e+ 05)

Entropy(GA) =
p1 × (GA) + p2

(GA)4 + q1 × (GA)3 + q2 × (GA)2 + q3 + q4
,

where (GA) normalized by mean 591.5 and std 521.5.

Parametric values (alongside 95% CI):

p1 = 1.692e+ 05, CI= (−8e+ 05, e+ 06)

p2 = 1.917e+ 05, CI= (−9e+ 05, e+ 06)

39



0 200 400 600 800 1000
ABC

0

50

100

150

200

250

E
nt

ro
py

Entropy vs. ABC
ABC

Figure 32: Entropy vs ABC

q1 = −3.01 , CI=(−8, 3)

q2 = 3, CI= (−15, 22) q3 = −4, CI= (−33, 24)

q4 = 1869, CI= (−8823, e+ 04)
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Figure 33: Entropy vs GA

Entropy(M1) =
p1 × (M1)2 + p2 × (M1) + p3

(M1)2 + q1 × (M1) + q2
,

where (M1) is normalized by mean 4320 and std 3791.

Parametric values (alongside 95% CI):

p1 = 5e+ 06, CI= (−e+ 09, 2e+ 09)

p2 = 1.266e+ 07, CI= (−4e+ 09, 4e+ 09)

p3 = 7.81e+ 06, CI= (−2e+ 09, 3e+ 09)

q1 = 5.598e+ 04, CI= (−2e+ 07, 2e+ 07) q2 = 7.624e+ 04, CI= (−2e+ 07, 2e+ 07)

Entropy(M2) =
p1 × (M2) + p2

(M2)4 + q1 × (M2)3 + q2 × (M2)2 + q3 × (M2) + q4
,

where (M2) is normalized by mean 4224 and std 3712.

Parametric values (alongside 95% CI):

p1 = 7.805e+ 04, CI= (−3e+ 05, 5e+ 05)
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Figure 34: Entropy vs M1

p2 = 9e+ 04 , CI= (−4e+ 05, 6e+ 05)

q1 = −3 , CI= (−9, 3)

q2 = 3.521, CI= (−15, 22)

q3 = −4 , CI= (−33, 24)

q4 = 865, CI = (−4065, 5795)
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Figure 35: Entropy vs M2

Entropy(M1) =
p1 × (M1)2 + p2 × (M1) + p3

(M1)2 + q1 × (M1) + q2
,

where (M1) is normalized by mean 1.026e+ 07 and std 1.372e+ 07.

Parametric values (alongside 95% CI):

p1 = 523, CI = (300, 745)

p2 = 1032, CI= (309, 1754)

p3 = 480, CI= (58, 902)

q1 = 5, CI= (2, 9)

q2 = 3, CI= (0.4, 7)

Entropy(M2) =
p1 × (M2)2 + p2 × (M2) + p3

(M2)2 + q1 × (M2) + q2
,
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Figure 36: Entropy vs M1

where (M2) is normalized by mean 7.632e+ 05 and std 1.023e+ 06

Parametric values (alongside 95% CI):

p1 = −1e+ 06, CI= (−7e+ 10, 7e+ 10)

p2 = −8e+ 06, CI= (−3e+ 11, 3e+ 11)

p3 = −5e+ 06, CI= (−2e+ 11, 2e+ 11)

q1 = −3e+ 04, CI= (−1e+ 09, 1e+ 09)

q2 = −3e+ 04 , CI= (−1e+ 09, 1e+ 09)
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Figure 37: Entropy vs M2

Entropy(HM) =
p1 × (HM)2 + p2 × (HM) + p3

(HM)2 + q1 × (HM) + q2
,

where (HM) is normalized by mean 9.802e+ 04 and std 8.409e+ 04

Parametric values (alongside 95% CI):

p1 = −3e+ 04, CI = (−5e+ 04,−1e+ 04)

p2 = −8e+ 04, CI= (−1e+ 05,−3e+ 04)

p3 = −5e+ 04, CI = (−8e+ 04,−1e+ 04)

q1 = −341, CI= (−538,−144)

q2 = −517, CI= (−862,−172)
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Figure 38: Entropy vs HM

Entropy(F) =
p1 × (F) + p2

(F)4 + q1 × (F)3 + q2 × (F)2 + q3 × (F) + q4
,

where (F) is normalized by mean 1.635e+ 04 and std 1.43e+ 04

Parametric values (alongside 95% CI):

p1 = −5e+ 06, CI= (−9e+ 09, 9e+ 09)

p2= −6e+ 06, CI= (−1e+ 10, 1e+ 10)

q1= 123, CI= (−2e+ 05, 2e+ 05)

q2 = −410, CI= (−7e+ 05, 7e+ 05)

q3 = 626, CI= (−1e+ 06, 1e+ 06)

q4 = −6e+ 04, CI= (−1e+ 08, 1e+ 08)
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Figure 39: Entropy vs F

Entropy(AZI) =
p1 × (AZI) + p2

(AZI)2 + q1 × (AZI) + q2
,

where (AZI) is normalized by mean 7718 and std 6667

Parametric values (alongside 95% CI):

p1 = 1e+ 04, CI= (519, 3e+ 04)

p2 = 2e+ 04, CI= (663, 4e+ 04)

q1 = −3, CI= (−5,−2)
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q2 = 197, CI= (6, 387)
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Figure 40: Entropy vs AZI

Entropy(J) =
p1 × (J)2 + p2 × (J) + p3

(J)2 + q1 × (J) + q2
,

where (J) is normalized by mean 494.8 and std 437.4.

Parametric values (alongside 95% CI):

p1 = −2e+ 06, (−3e+ 08, 3e+ 08)

p2 = −6e+ 06, (−7e+ 08, 7e+ 08)

p3 = −4e+ 06, (−4e+ 08, 5e+ 08)

q1 = −2e+ 04, (−3e+ 06, 3e+ 06)

q2 = −4e+ 04, (−5e+ 06, 4e+ 06)
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Figure 41: Entropy vs J

Entropy(ReZG1) =
p1 × (ReZG1)2 + p2 × (ReZG1) + p3

(ReZG1)3 + q1 × (ReZG1)2 + q2 × (ReZG1) + q3
,

where (ReZG1) is normalized by mean 504 and std 451.3

Parametric values (alongside 95% CI):

p1 = 2e+ 06, CI= (−3e+ 09, 3e+ 09)

p2 = 7e+ 06, CI=(−8e+ 09, 8e+ 09)
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p3 = 5e+ 06, CI=(−5e+ 09, 5e+ 09)

q1 = −0.7, CI= (−2721, 2720)

q2 = 2e+ 04, CI= (−3e+ 07, 3e+ 07)

q3 = 4e+ 04, CI= (−5e+ 07, 5e+ 07)
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Figure 42: Entropy vs ReZG1

Entropy(ReZG2) =
p1 × (ReZG2)2 + p2 × (ReZG2) + p3

(ReZG2)3 + q1 × (ReZG2)2 + q2 × (ReZG2) + q3
,

where ReZG2)is normalized by mean 968.5 and std 845.7.

Parametric values (alongside 95% CI):

p1 = −3e+ 06, CI= (−1e+ 09, 1e+ 09)

p2 = −9e+ 06, CI=(−3e+ 09, 3e+ 09)

p3 = −6e+ 06, CI=(−2e+ 09, 2e+ 09)

q1 = 39, CI=(−1e+ 04, 1e+ 04)

q2 = −4e+ 04, CI=(−1e+ 07, 1e+ 07)

q3 = −6e+ 04, CI=(−2e+ 07, 2e+ 07)

0 500 1000 1500 2000
REZ2

0

50

100

150

200

250

E
nt

ro
py

Entropy vs. REZ2
REZ2

Figure 43: Entropy vs ReZG2

Entropy(ReZG3) =
p1 × (ReZG3) + p2

(ReZG3)4 + q1 × (ReZG3)3 + q2 × (ReZG3)2 + q3 × (ReZG3) + q4
,
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where (ReZG3) is normalized by mean 5e+ 04 and std 4e+ 04.

Parametric values (alongside 95% CI):

p1 = 2e+ 04, CI=(−9e+ 04, 1e+ 05)

p2 = 2e+ 04, CI=(−1e+ 05, 1e+ 05)

q1 = −3, CI=(−8, 3)

q2 = 3, CI=(−15, 22)

q3 = −4, CI=(−34, 25)

p4 = 235.1, CI=(−1079, 1549)
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Figure 44: Entropy vs ReZG3

Table 11: Entropy Goodness of Fit versus IndicesTbO2.

Index Fit Type SSE R2 RMSE

R1 rat12 0.06044 1 0.1419
R−1 rat22 0.0002752 1 0.01173
R 1

2
rat22 0.00489 1 0.04945

R− 1
2

rat14 0.0008022 1 0.02832

ABC rat22 0.000446 1 0.01493
GA rat14 5.669e-05 1 0.007529
M1 rat22 0.00934 1 0.06834
M2 rat14 0.0002615 1 0.01617

M1 rat22 7.605 0.9998 1.95

M2 rat22 62.19 0.9987 5.576
HM rat22 0.0004494 1.000 0.01499
F rat14 0.0005799 1.000 0.07615

AZI rat12 0.09443 1.000 0.1774
J rat22 0.003381 1.000 0.04111

ReG1 rat23 0.002288 1.000 0.04784
ReG2 rat23 0.000187 1.000 0.01367
ReG3 rat14 0.003319 1.000 0.05761
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3.2 Graphite Carbon Nitride Results

3.2.1 Topological Indices of g − C3N4

Order and size of the chemical graph of polycyclic graphite carbon nitride structure, denoted

as g − C3N4, are 14lk + l + k and 18lk, respectively. Because there are three different types of

vertices in g − C3N4 specifically, the vertices of degree 1, 2, 3, respectively. Vertex partition of

the vertex set g − C3N4 is shown in table 12. Edge partition of g − C3N4 based on the degrees

of each edge’s end vertices are displayed in table 13.

Table 12: Partitioning of set of vertices of g − C3N4

=̃(s) Frequency Vertex Set

1 l + k + 1 V1

2 6lk + l + k − 2 V2

3 8lk − l − k + 1 V3

Table 13: Partitioning of set of edges of g − C3N4

(=̃(s), =̃(t)) Frequency Set of Edges

(1, 3) l + k + 1 E1

(2, 3) 12lk + 2l + 2k − 4 E2

(3, 3) 6lk − 3l − 3k + 3 E3

Let G denote the chemical graph of g − C3N4 and =̃(s) represent the degree of vertex s.

• GR index of g − C3N4

For α = 1,

R1(G) =
∑

st∈E(G)

(=̃(s)× =̃(t))

= (l + k + 1)(1× 3) + (12lk + 2l + 2k − 4)(2× 3) + (6lk − 3l − 3k + 3)(3× 3)

= 126lk − 12l − 12k
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For α = −1,

R−1(G) =
∑

st∈E(G)

1

(=̃(s)× =̃(t))

= (l + k + 1)
1

(1× 3)
+ (12lk + 2l + 2k − 4)

1

(2× 3)
+ (6lk − 3l − 3k + 3)

1

(3× 3)

=
8

3
lk +

1

3
l +

1

3
k.

For α = 1
2 ,

R 1
2
(G) =

∑
st∈E(G)

√
(=̃(s)× =̃(t))

= (l + k + 1)
√

(1× 3) + (12lk + 2l + 2k − 4)
√

(2× 3)

+ (6lk − 3l − 3k + 3)
√

(3× 3)

= 47.393877lk − 2.36897l − 2.36897k + 0.934092.

For α = − 1
2 ,

R− 1
2
(G) =

∑
st∈E(G)

1√
(=̃(s)× =̃(t))

= (l + k + 1)
1√

(1× 3)
+ (12lk + 2k + 2l − 4)

1√
(2× 3)

+ (6lk − 3l − 3k + 3)
1√

(3× 3)

= 6.898979lk + 0.393847l + 0.393847k − 0.055643.

The numerical representation of the above-mentioned computed results is shown in table 14.

Table 14: Randic index for α = 1, −1, 1
2 , −

1
2

[l, k] R1(G) R−1(G) R 1
2
(G) R− 1

2
(G)

[1, 1] 108 3.33 43.59 7.63
[2, 2] 462 12 181.03 29.12
[3, 3] 1068 26 413.27 64.40
[4, 4] 1926 45.33 740.28 113.48
[5, 5] 3036 70 1162.09 176.36
[6, 6] 4398 100 1678.68 253.03
[7, 7] 6012 135.33 2290.07 343.51
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• ABC index of g − C3N4

ABC(G) =
∑

st∈E(G)

√
=̃(s) + =̃(t)− 2

dsdt

= (l + k + 1)

√
1 + 3− 2

1× 3
+ (12lk + 2l + 2k − 4)

√
2 + 3− 2

2× 3

+ (6lk − 3l − 3k + 3)

√
3 + 3− 2

3× 3

=

√
2

3
(l + k + 1) +

√
1

2
(12lk + 2l + 2k − 4) + 2 (2lk − l + 1− k)

= 12.4853lk + 0.2307l + 0.2307k − 0.0119.

• GA index of g − C3N4

GA(G) =
∑

st∈E(G)

2

√
=̃(s)× =̃(t)

=̃(s) + =̃(t)

= (l + k + 1)
2
√

1× 3

1 + 3
+ (12lk + 2l + 2k − 4)

2
√

2× 3

2 + 3

+ (6lk − 3l − 3k + 3)
2
√

3× 3

3 + 3

=

√
3 (l + k + 1)

2
+

24
√

6lk + 4
√

6l + 4
√

6k − 8
√

6

5
+ 6lk − 3l + 3− 3k

= 17.757551lk − 0.174383l − 0.174383k − 0.054158.

The numerical representation of the above-mentioned computed results is shown in table 15.

Table 15: ABC and GA indices for g − C3N4.

[l, k] ABC(G) GA(G)
[1, 1] 12.92 17.36
[2, 2] 50.85 70.28
[3, 3] 113.74 158.72
[4, 4] 201.60 282.67
[5, 5] 314.43 442.14
[6, 6] 452.23 637.12
[7, 7] 614.99 867.63

• M1 and M2 indices of g − C3N4
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M1(G) =
∑

st∈E(G)

(=̃(s) + =̃(t))

= (l + k + 1)(1 + 3) + (12lk + 2l + 2k − 4)(2 + 3) + (6lk − 3l − 3k + 3)(3 + 3)

= 96lk − 4l − 4k + 2.

M2(G) =
∑

st∈E(G)

(=̃(s)× =̃(t))

= (l + k + 1)(1× 3) + (12lk + 2l + 2k − 4)(2× 3)

+ (6lk − 3l − 3k + 3)(3× 3)

= 126lk − 12l − 12k + 6.

• M1 and M2 of g − C3N4

M1(G) =
∑

pq/∈E(G)

(=̃(s) + =̃(t))

= 2(18lk)(14lk + l + k − 1)− (96lk − 4l − 4k + 2)

= 504l2k2 + 36l2k + 36lk2 − 132lk + 4l + 4k − 2.

M2(G) =
∑

pq/∈E(G)

(=̃(s)× =̃(t))

M2(G) = 2(18lk)2 − 1

2
(96lk − 4l − 4k + 2)− (126lk − 12l − 12k + 6)

= 648l2k2 + 14l − 174lk + 14k − 7.

The numerical representation of the above-mentioned computed results is shown in Table 16.

Table 16: Consideration of M1(G), M2(G), M1(G), M2(G) indices for g − C3N4.

[k, l] M1(G) M2(G) M1(G) M2(G)
[1, 1] 90 108 450 495
[2, 2] 370 462 8126 9721
[3, 3] 842 1068 41602 50999
[4, 4] 1506 1926 131550 163209
[5, 5] 2362 3036 320738 400783
[6, 6] 3410 4398 664030 833705
[7, 7] 4650 6012 1228386 1547511
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3.2.2 Entropy and Heat of Formation g − C3N4

Figure 45 depicts the synthesis reaction path of g − C3N4 from the precursors of urea and

dicyanodiamine. g−C3N4 has a standard molar enthalpy of 18.70kJmol−1(4.47kcal/mol) . The

Figure 45: Synthesis of Graphitic Carbon Nitride from (a) Dicyanodiamine Precursors and
(b)Urea [36].

enthalpy of g − C3N4 has an inverse relationship with its crystal size, decreasing as the number

of unit cells increases, according to these calculations. The entropy of g − C3N4 was calculated

using the same approach. g − C3N4 has a molar standard entropy of 77Jmol−1K−1. For each

formula unit, Avogadro’s number was divided by the molar standard entropy. The result was

then multiplied by the number of formula units found in a single unit cell.

Entropy and HoF parameters for various values of l and k are given in table 17. Figure 46-48
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Table 17: HoF and entropy values for g − C3N4

[l, k] Formula Units Entropy × 1022kJ Heat of Formation × 1022kJ
[1, 1] 4 5.117 1.242
[2, 2] 16 0.204 4.968
[3, 3] 36 0.460 0.111
[4, 4] 64 0.818 0.198
[5, 5] 100 0.012 0.310
[6, 6] 144 0.018 0.447
[7, 7] 196 0.025 0.608

show the comparisons.

Figure 46: Graphical Representations of R1, R−1, R1/2 and R−1/2

3.2.3 HoF(and Entropy) and Indices Curve Fitting

We can study the link between several variables is a set of data. This analysis was performed to

investigate the relationship between formation heat/entropy and several variables. Several curve

fitting approaches are employed to obtain a graphical model for (HoF) and entropy vs several

degree based indices.
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Figure 47: Graphical Representations of ABC, GA

Figure 48: Graphical Representations of M1, M2, M1 and M2

3.2.4 General models for Indices vs HoF

Graphical models of HoF vs indices are shown figures 49, 50, 51, 52 and 53. Parametric for each

graphical fitted model are provided along with 95% CI in the following computations.

HoF(R1) =
p1 × R3

1 + p2 × R2
1 + p3 × R1 + p4

R2
1 + q1 × R1 + q2

(5)
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Parametric values (alongside 95% CI):

p1 = 1e−05(−0.005, 0.005), p2 = 0.5(−1051, 1052), p3 = −547(−5e+07, 5e+07), p4 = 18(−6e+

10, 6e+ 10), q1 = −525(−1e+ 08, 1e+ 08), q2 = 26(−5e+ 10, 5e+ 10).

HoF(R−1) =
p1 × R2

−1 + p2 × R−1 + p3

R−1 + q1
(6)

Parametric values (alongside 95% CI):

p1 = 0.0003(−0.004, 0.004), p2 = 0.5(0.2, 1), p3 = −14(−20,−7), q1 = −14(−14,−12).
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Figure 49: (a) R1 vs HoF (b) R−1 vs HoF

HoF(R 1
2
) =

p1 × R2
1
2

+ p2 × R 1
2

+ p3

R2
1
2

+ q1 × R 1
2

+ q2
(7)

Parametric values (alongside 95% CI):

p1 = 0.552(0.3, 0.8), p2 = 0.5(0.3, 0.8), p3 = 0.1114(−0.06, 0.3), q1 = 1.249(0.5, 2), q2 = 0.3272(−0.3, 1).

HoF(R− 1
2
) =

p1 × (R−
1
2 )2 + p2 × R−

1
2 + p3

(R−
1
2 )2 + q1 × R−

1
2 + q2

(8)

Parametric values (alongside 95% CI):

p1 = 0.5561(0.3, 0.8), p2 = 0.5(0.3, 0.8), p3 = 0.1(−0.1, 0.3), q1 = 1.251(0.5, 2), q2 = 0.3292(−0.3, 1).
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Figure 50: (a) R 1
2

vs HoF (b) R− 1
2

vs HoF

HoF(ABC) =
p1 × (ABC)2 + p2 × (ABC) + p3

ABC + q1
(9)

Parametric values (alongside 95% CI):

p1 = 8e− 05(−0.0001, 0.0001), p2 = 0.5(0.2, 0.9), p3 = −60(−85,−34), q1 = −58(−61,−53).

HoF(GA) =
p1 × (GA)2 + p2 × (GA) + p3

(GA)2 + q1 × (GA) + q2
(10)

Parametric values (alongside 95% CI):

p1 = 0.5295(0.1, 1), p2 = −0.4(−2.3, 1.5), p3 = −0.5(−1.4, 0.5), q1 = −0.6(−3.8, 2.7), q2 =

−1.281(−4, 1.5).
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Figure 51: (a) AB vs HoF (b) GA vs HoF

55



HoF(M1) =
p1 × (M1)2 + p2 × (M1) + p3

M1 + q1
(11)

Parametric values (alongside 95% CI):

p1 = 1e−05(−0.00001, 0.00001), p2 = 0.5(0.2, 0.9), p3 = −437(−622,−252), q1 = −420(−447,−393).

HoF(M2) =
p1 × (M2)2 + p2 × (M2) + p3

(M2)2 + q1 ×M2 + q2
(12)

Parametric values (alongside 95% CI):

p1 = 0.5(0.3, 0.8), p2 = 0.5(0.3, 0.8), p3 = 0.1(−0.1, 0.3), q1 = 1(0.5, 2), q2 = 0.3(−0.3, 1).
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Figure 52: (a) M1 vs HoF (b) M2 vs HoF

HoF(M1) =
p1 × (M1) + p2

(M1)4 + q1 × (M1)3 + q2 × (M1)2 + q3 × (M1) + q4
(13)

Parametric values (alongside 95% CI):

p1 = 0.01(−2.5, 2.5), p2 = 0.01(−1.72, 1.74), q1 = −0.4(−2, 1.22), q2 = −2.32(−3.7,−1), q3 =

−1.1(−9.196, 7.01), q4 = −0.02(−5.6, 5.54).

HoF(M2) =
p1 × (M2) + p2

(M2)2 + q1 × (M2) + q2
(14)
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Parametric values (alongside 95% CI):

p1 = 3785(−4e+ 07, 4e+ 07), p2 = 2782(−3e+ 07, 3e+ 07), q1 = 1e+ 04(−1e+ 08, 1e+ 08), q2 =

8467(−9e+ 07, 9e+ 07).
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Figure 53: (a) M1 vs HoF (b) M2 vs HoF

Table 18: Goodness of Fit for HoF vs Indices for g − C3N4.

Index Fit Type SSE R2 RMSE

R1(G) rat32 0.055 0.997 0.234
R−1(G) rat21 0.058 0.997 0.139
R 1

2
(G) rat22 0.023 0.999 0.108

R− 1
2
(G) rat22 0.023 0.999 0.107

ABC(G) rat21 0.056 0.997 0.137
GA(G) rat22 0.038 0.998 0.138
M1(G) rat21 0.056 0.997 0.136
M2(G) rat22 0.024 0.999 0.109

M1(G) rat14 0.232 0.987 0.482

M2(G) rat12 0.152 0.992 0.225

3.2.5 General models for Indices vs Entropy

Graphical models of entropy vs indices are depicted in figures 54-61.

Entropy(R1) =
p1 × R1 + p2

R3
1 + q1 × R2

1 + q2 × R1 + q3
(15)

Coefficients (with 95% confidence bounds):

p1 = 0.002(−0.04, 0.04), p2 = 0.01(−0.03, 0.049), q1 = 1.9(1.8, 1.93), q2 = 0.98(0.91, 1.05), q3 =
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0.2(0.1, 0.2).

Entropy(R−1) =
p1

R3
−1 + q1 × R2

−1 + q2 × R−1 + q3
(16)

Parametric values (alongside 95% CI):

p1 = 0.01(0.07, 0.01), q1 = 1.8(1.81, 1.9), q2 = 0.96(0.92, 0.99), q3 = 0.14(0.14, 0.15).
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Figure 54: (a) R1 vs Entropy (b) R−1 vs Entropy

Entropy(R 1
2
) =

p1
R4

1
2

+ q1 × R3
1
2

+ q2 × R2
1
2

+ q3 × R 1
2

+ q4
(17)

Parametric values (alongside 95% CI):

p1 = 300(−2e+ 07, 2e+ 07), q1 = 9612(−7e+ 08, 7e+ 08), q2 = 1e+ 04(−1e+ 09, 1e+ 09), q3 =

4311(−3e+ 08, 3e+ 08), q4 = 751(−6e+ 07, 6e+ 07).

Entropy(R− 1
2
) =

p1 × (R− 1
2
) + p2

(R− 1
2
)3 + q1 × (R− 1

2
)2 + q2 × (R− 1

2
) + q3

(18)

Coefficients (with 95% confidence bounds):

p1 = 0.001(−0.04, 0.04), p2 = 0.01(−0.03, 0.05), q1 = 1.85(1.77, 1.9), q2 = 0.96(0.9, 1.03), q3 =

0.15(0.1, 0.18).
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Figure 55: (a) R 1
2

vs Entropy (b) R− 1
2

vs Entropy

Entropy(ABC) =
p1 × (ABC)2 + p2 × (ABC) + p3

(ABC)3 + q1 × (ABC)2 + q2 × (ABC) + q3
(19)

Parametric values (alongside 95% CI):

p1 = 3462(−1e+ 09, 1e+ 09), p2 = 2175(−6e+ 08, 6e+ 08), p3 = −1638(−4e+ 08, 4e+ 08), q1 =

2e+ 04(−6e+ 09, 6e+ 09), q2 = 24e+ 04(−7e+ 09, 7e+ 09), q3 = 2359(−6e+ 08, 6e+ 08).

Entropy(GA) =
p1 × (GA)3 + p2 × (GA)2 + p3 × (GA) + p4

(GA)2 + q1 × (GA) + q2
(20)

Parametric values (alongside 95% CI):

p1 = −0.001(−0.003, 0.002), p2 = 0.68(−1.573, 2.931), p3 = −225(−938.4, 488.6), p4 = 9956(−3e+

04, 5e+ 04), q1 = −354(−538.2,−169.2), q2 = 7061(−1995, 1e+ 04).

Entropy(M1) =
p1

(M1)4 + q1 × (M1)3 + q2 × (M1)2 + q3 × (M1) + q4
(21)

Parametric values (alongside 95% CI):

p1 = 457(−6e+07, 6e+07), q1 = 1e+04(−1e+09, 1e+09), q2 = 1e+04(−2e+09, 2e+09), q3 =

4538(−6e+ 08, 6e+ 08), q4 = 815(−1e+ 08, 1e+ 08).
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Figure 56: (a) AB vs Entropy (b) GA vs Entropy

Entropy(M2) =
p1

(M2)4 + q1 × (M2)3 + q2 × (M2)2 + q3 × (M2) + q4
(22)

Parametric values (alongside 95% CI):

p1 = 461.6(−7e+07, 7e+07), q1 = 1e+04(−2e+09, 2e+09), q2 = 1e+04(−2e+09, 2e+09), q3 =

3620(−6e+ 08, 6e+ 08), q4 = 673(−1e+ 08, 1e+ 08).
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Figure 57: (a) M1 vs Entropy (b) M2 vs Entropy
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Entropy(M1) =
p1 × (M1) + p2

(M1)3 + q1 × (M1)2 + q2 × (M1) + q3
(23)

Parametric values (alongside 95% CI):

p1 = 0.003785(−0.0181, 0.02567), p2 = 0.002874(−0.01328, 0.01903), q1 = 1.844(1.757, 1.931), q2 =

1.118(1.038, 1.197), q3 = 0.2226(0.2115, 0.2337).

Entropy(M2) =
p1 × Entropy(M2) + p2

(M2)3 + q1 × (M2)2 + q2 × (M2) + q3
(24)

Parametric values (alongside 95% CI):

p1 = 0.003801(−0.01753, 0.02514), p2 = 0.002822(−0.01299, 0.01864), q1 = 1.836(1.732, 1.94), q2 =

1.108(1.01, 1.207), q3 = 0.2199(0.2037, 0.2362).
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Figure 58: (a) R 1
2

vs Entropy (b) R− 1
2

vs Entropy

Entropy(ABC) =
p1 × (ABC)2 + p2 × (ABC) + p3

(ABC)3 + q1 × (ABC)2 + q2 × (ABC) + q3
(25)

Parametric values (alongside 95% CI):

p1 = 3462(−1e+ 09, 1e+ 09), p2 = 2175(−6e+ 08, 6e+ 08), p3 = −1628(−4e+ 08, 4e+ 08), q1 =

2e+ 04(−6e+ 09, 6e+ 09), q2 = 2e+ 04(−7e+ 09, 7e+ 09), q3 = 2359(−6e+ 08, 6e+ 08).

61



Entropy(GA) =
p1 × (GA)3 + p2 × (GA)2 + p3 × (GA) + p4

(GA)2 + q1 × (GA) + q2
(26)

Parametric values (alongside 95% CI):

p1 = −0.0005(−0.003, 0.002), p2 = 0.68(−1.6, 2.9), p3 = −225(−938, 489), p4 = 9956(−3e +

04, 5e+ 04), q1 = −354(−538,−169.2), q2 = 7061(−1995, 1e+ 04).
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Figure 59: (a) AB vs Entropy (b) GA vs Entropy

Entropy(M1) =
p1

(M1)4 + q1 × (M1)3 + q2 × (M1)2 + q3 × (M1) + q4
(27)

Parametric values (alongside 95% CI):

p1 = 458(−1e+07, 6e+07), q1 = 1e+04(−1e+09, 1e+09), q2 = 1e+04(−2e+09, 2e+09), q3 =

4528(−6e+ 08, 6e+ 08), q4 = 816(−1e+ 08, 1e+ 08).

Entropy(M2) =
p1

(M2)4 + q1 × (M2)3 + q2 × (M2)2 + q3 × (M2) + q4
(28)

Parametric values (alongside 95% CI):

p1 = 463.6(−8e+07, 8e+07), q1 = 1e+04(−2e+09, 2e+09), q2 = 1e+04(−3e+09, 3e+09), q3 =

3720(−6e+ 08, 6e+ 08), q4 = 663(−1e+ 08, 1e+ 08).
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Figure 60: (a) M1 vs Entropy (b) M2 vs Entropy

Entropy(M1) =
p1 × (M1) + p2

(M1)3 + q1 × (M1)2 + q2 × (M1) + q3
(29)

Parametric values (alongside 95% CI):

p1 = 0.003785(−0.0181, 0.02567), p2 = 0.002874(−0.01328, 0.01903), q1 = 1.844(1.757, 1.931), q2 =

1.118(1.038, 1.197), q3 = 0.2226(0.2115, 0.2337).

Entropy(M2) =
p1 × Entropy(M2) + p2

(M2)3 + q1 × (M2)2 + q2 × (M2) + q3
(30)

Parametric values (alongside 95% CI):

p1 = 0.003801(−0.01753, 0.02514), p2 = 0.002822(−0.01299, 0.01864), q1 = 1.836(1.732, 1.94), q2 =

1.108(1.01, 1.207), q3 = 0.2199(0.2037, 0.2362).

Table 19: Goodness of Fit for Entropy vs Indices for g − C3N4.

Index Fit Type SSE R2 RMSE

R1(G) rat13 8e-04 1.000 0.020
R−1(G) rat03 8e-04 1.000 0.017
R 1

2
(G) rat04 5e-02 0.998 0.158

R− 1
2
(G) rat13 8e-04 1.000 0.020

ABC(G) rat23 4e-02 0.998 0.197
GA(G) rat32 4e-03 1.000 0.060
M1(G) rat04 6e-02 0.997 0.174
M2(G) rat04 7e-02 0.997 0.186

M1(G) rat13 8e-04 1.000 0.021

M2(G) rat13 8e-04 1.000 0.021
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Figure 61: (a) M1 vs Entropy (b) M2 vs Entropy

Tables 18 and 19 provide the statistical values for the method of rational fit which provided the

least error in case of every fit between indices and HoF and entropy.
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Chapter 4

Conclusion
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The links between terbium dioxide and thermodynamical characteristics have been developed

based on mathematical models. Graphical illustrations have also been provided. This research

aids in a deeper understanding of the chemical structure of terbium dioxide based on the graphical

qualities of its corresponding chemical graph which is more cost-effective and efficient. The

relationships between indices & heat of formation and indices & entropy has been shown using

curve fitting techniques. The rational fitting strategy was chosen due to its effectiveness. The

same methodology was applied on graphite carbon nitride as well.
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